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Figure 1: The fiber optic patient interface. 

Introduction 

 
This project aimed at developing new reconstruction methods that 

improves the quality and quantification of functional properties in 

near in near infrared (NIR) imaging [1-3]. This NIR imaging 

technique uses NIR light (600 nm – 1000 nm) to probe the breast 

tissue delivered through fiber optic bundles, which are also used to 

collect the propagated diffused light (fiber-optic setup is shown in 

Figure 1) [2,3], giving its name diffuse optical tomography (DOT). 

Modeling of this diffuse light propagation requires advanced 

computational methods due to the non-linear nature of light 

propagation, mainly due to the dominance of light scattering over 

attenuation [1]. Most of the current computational models are in 

two-dimensions (2D), even though light travels in three-dimensions 

(3D), due to computational complexity and limited number of measurements. Estimation of functional 

properties is highly dependent on these computational models and development of new computational methods 

(image reconstruction methods) in 3D that reduce computational complexity is the main objective of this 

project.  

 

Specifically, the aims of this project are  

1) Reducing the computational complexity of 3D optical imaging by investigating different data collection 

strategies and optimizing these procedures. 

2) Improving the quantitative accuracy of optical images by exploring the effect of penalty terms on the 

reconstruction techniques. Incorporation of a priori information from other modalities (like MRI, CT) 

into the reconstruction procedures and studying its effect. 

3) Exploring effective ways of displaying and coregistering 3D DOT images. 

 

During last 2 years of funding of this project, the main aims of this project were completed. Optimization of 

critical computational aspects in NIR imaging was completed. An optimal data-collection strategy especially for 

the DOT clinical system at Dartmouth for the current estimation of breast tissue optical properties was also 

found. An effective way for usage of a priori structural of information from MRI/CT into the image 

reconstruction procedure was developed and proven that the quantitative accuracy of DOT images can be 

improved by at least a factor of two with this additional information. A generalized estimation procedure was 

developed which will take into account the noise characteristics of instruments and breast tissue optical 

properties and has been shown robust to highly noisy data. A computationally efficient approach to dramatically 

reduce the size of the matrix to be inverted in cases where the number of imaging parameters are much larger 

than the boundary data is developed. This algorithm reformulates the inversion approach, within most least-

squares approaches, to allow the inversion to be based upon the size of the data, rather than the number of 

imaging field parameters, and this is useful for most 3D imaging situations. This algorithm improved the 

computational speed by at least a factor of three. The final aim of the project was modified, as there are 

commercial platforms available to coregister 3D DOT images with MRI/CT (for example, OMIRAD from 

Siemens [4]; available to NIR imaging group from Siemens as a part of network effort funded by NIH (U54 

CA105480: Network for Translational Research in Optical Imaging)), to an important problem to find methods 

to counteract the noisy data (which is more common in imaging large breasts (> 8 cm in diameter)). This noisy 

data causes large artifacts when used in the traditional reconstruction methods, some times these traditional 

methods may not be able to converge to any meaningful solutions in these cases. When the experimental system 
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Figure 2: The reconstructed absorption coefficient distribution for 

the cylindrical object with a spherical absorption 
inhomogeneity (diameter of 15mm and contrast 2:1 with respect 

to background) located at x, y and z locations (a) (0,0,0), 

(b) (30,0,0) and (c) (30,0,10). The three columns of images show 

the results achieved with the three different data collection schemes.
 

was characterized to provide noise characteristics of the data collected, along with structural and spectral prior 

information, using these (noise characteristics) in the generalized reconstruction approach was proven to give 

more quantitative accurate images (with in 20% error limit) of spectrally-derived tissue functional properties 

even in cases of highly noisy experimental phantom data. With out these noise characteristics, traditional 

reconstruction algorithms are not able to provide any meaningful functional images.            

         

Body 
 

Optimizing the critical computational aspects of near infrared tomographic imaging  

 

The image resolution and contrast in Near-

Infrared (NIR) tomographic image 

reconstruction are affected by parameters 

such as the number of boundary 

measurements, the mesh resolution in the 

forward calculation and the reconstruction 

basis. The magnitude of the total sensitivity 

was analyzed to find the spatial variation 

for a given problem, and the field response 

of the domain becomes more uniform by 

increasing the sensitivity to deeper regions, 

while suppressing the hypersensitivity near 

the external boundaries.  This is achieved 

with an increase in the number of 

measurements. 

 

Using singular-value decomposition (SVD) 

and example reconstructed images, 

numbers of 16 or 24 fibers are sufficient for 

imaging the 2D domain.  The number of 

useful measurements actually decreases 

exponentially with the number of 

measurements used, and the number of 

useful singular values increases only as the 

logarithm of the number of measurements. 

For this 2D reconstruction problem, given a 

computational limit of 10 sec per iteration, 

leads to choice of forward mesh with 1785 

nodes and reconstruction (pixel) basis of 

30x30 elements. 

 

The use of three fundamentally different data collection strategies for three-dimensional (3D) NIR tomography 

was compared. Given a 3D NIR imaging problem, using a single plane of data can provide useful images if the 

anomaly to be reconstructed is within the measurement plane. However, if the location of the anomaly is not 

known, 3D data collection strategies are very important. The recovered quantitative accuracy of the anomaly 

region decreases (approximately 10%) with the addition of out-of-plane data relative to in-plane data. Usage of 
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Figure 3: Reconstruction results with the usage of imperfect structural priors using  

different reconstruction techniques. 
 

 

 

 

 
Figure 4: Reconstruction results using different minimization techniques with 3% 

noise in the data. 
 

single-plane of data gives slightly better quantitative accuracy, if the anomaly lies in the data acquisition plane. 

Further the quantitative accuracy of the reconstructed anomaly increased approximately from 15% to 89% as the 

anomaly moved from the centre to boundary, respectively. The data supports the idea that the use of in-plane 

data in the 3D data collection strategies may be sufficient for the 3D NIR imaging.  

 

Complete work along with the methods employed and detailed discussion of the results given in the appendix 

[5] (Yalavarthy et al, Opt. Express 14, p. 6113-6127, 2006). 

 

Usage of structural a-priori information 

 

NIR tomography combined with conventional 

imaging modalities (MRI, CT and Ultra Sound) 

has been a very active area of research. These 

hybrid systems show superior performance in 

terms of qualitative (resolution) and quantitative 

accuracy compared to stand-alone systems. But 

still there is lot of ambiguity in utilizing the 

spatial information from these high spatial 

resolution images into NIR tomography 

(coregistration). This work develops a simple 

framework to incorporate structural a-priori 

information. Simple weight matrices that have 

Laplacian-type or Helmholtz-type structures that 

are derived from a-priori information have been 

developed. It has been shown that utilization of 

structural information using these weight matrices 

will not bias the reconstruction problem towards imperfect structural priors. Usage of imperfect a-priori 

information in a parameter reduction (i.e. hard-priors) in the imaging field through the enforcement of spatially 

explicit regions gives erroneous results. In the phantom experiments, it is shown that the Helmholtz type of 

regularization matrix gives the best estimate of the scattering parameter and the Laplacian provides best 

estimate for the absorption parameter. Overall, usage of structural-priors improve the reconstructed image 

quantitative accuracy by at least a factor of two.  

 

Details of the implementation along with analysis 

of results given in the appendix [6] (Yalavarthy et 

al, Opt. Express 15, p. 8043-8058,  2007). 

 

Generalized Least-Squares (GLS) 

minimization: Two-dimensional imaging 

(Numerical Study) 

 

DOT involves recovery of the distribution of 

optical parameters by matching the experimental 

data with modeled data (Levenberg-Marquardt 

(LM) Minimization). A variation of this approach 

by adding the parameter field to the minimization 
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function is done through Tikhonov regularization, where the regularization parameter is chosen to overcome the 

ill-conditioning of the problem. In this work, a generalized framework for DOT was developed including 

variance of the data and parameters as weight matrices. These weight matrices can also include the structural 

information obtained by MRI, Ultrasound or X-ray imaging. These weight matrices, include the system noise 

characteristics and expected size of optical parameters and constraints for the imaging problem and make the 

inversion routine more robust to noise. This also makes the imaging problem more stable. It is also important to 

note that Tikhonov regularization becomes a special case of the Generalized Least-Squares (GLS) formulation. 

This GLS estimation of optical properties has been shown to be very robust to noise and proven to be stable 

over iterations. 

 

Complete formulation along with results is given in the appendix [6] (Yalavarthy et al, Med. Phys. 34, p. 2085-

2098, 2007).   

 

A computationally efficient algorithm for 

three-dimensional imaging 

 

Three-dimensional (3D) diffuse optical 

tomography (DOT) is known to be a non-linear, 

ill-posed and sometimes under-determined 

problem, where regularization is added to the 

minimization to allow convergence to a unique 

solution. In this work, a generalized least-

squares (GLS) minimization method was 

implemented, which employs weight matrices 

for both data-model misfit and optical properties 

to include their variances and covariances, using 

a computationally efficient scheme. This allows 

inversion of a matrix that is of dimension 

dictated by the number of measurements, 

instead of by the number of imaging parameters. 

This increases the computation speed up to four 

times per iteration in most of under-determined 

3D imaging problems. An analytic derivation, 

using the Sherman-Morrison-Woodbury 

identity, is shown for this efficient alternative 

form and it is proven to be equivalent, not only 

analytically, but also numerically. Equivalent 

alternative forms for other minimization 

methods, like Levenberg-Marquardt (LM) and 

Tikhonov, are also derived. 3D reconstruction 

results indicate that the poor recovery of 

quantitatively accurate values in 3D optical 

images can also be a characteristic of the 

reconstruction algorithm, along with the target 

size. Interestingly, usage of GLS reconstruction 

methods reduces error in the periphery of the 

 

 
Figure 5:  Actual and reconstructed (a) µa and (b) µ’s distributions of a cylindrical 

target using experimental multi-layered phantom data. Two-dimensional cross-

sections of the 3D volume in 2.5 mm increments spanning from z = -12.5 mm to  

z = 12.5 mm (from left to right) are shown. Actual distributions are given in the  

first row. Reconstructed distribution using the Levenberg-Marquardt (LM) 

minimization scheme and GLS minimization scheme are presented in the middle  

and last rows respectively. 
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image, as expected, and improves by 20% the ability to quantify local interior regions in terms of the recovered 

optical contrast, as compared to LM methods. Characterization of detector (PMTs) noise have enabled the use 

of the GLS method for reconstructing experimental data and showed a promise for better quantification of target 

in 3D optical imaging. Use of these new alternative forms becomes effective when the ratio of the number of 

imaging property parameters exceeds the number of measurements by a factor greater than 2. 

 

Complete formulation along with the analytic derivation is given in the appendix [7] (Yalavarthy et al, Med. P 

hys. 2007 (submitted)).   

 

Incorporation of noise characteristics into the near infrared tomographic image reconstruction 

algorithms 

 

To incorporate the noise characteristics into the image 

reconstruction algorithm, the first step was to characterize 

the experimental data collection system. As 

photomultiplier tubes (PMT) are used as a detectors in the 

data-collections syst 

 em at Dartmouth for the data-collection [8], to measure 

the deviation in the measured signal, a series of light 

signal measurements were taken through a homogeneous 

intralipid phantom  experiments were conducted with 

increasing levels of blood (HbT) concentration, varying 

from 7.3 µM to 36 µM, leading to a decrease in the 

measured PMT voltage. To achieve this, the gain of the 

PMT was kept at 0.9. A concise discussion of the PMT 

gain setting in the system characterization is given in Ref. 

[8]. A single source and the farthest detector (number-8) 

was used for these transmission measurements. For every 

concentration 200 data points were collected to estimate the deviation in the measured voltage using the same 

gain settings. The approach for the characterization is similar to the one described in Ref. [8], except the raw 

detected voltage was used here for estimation of the error (or deviation σ). Note also that two sets of diameters, 

 
Figure 6: An error (deviation, σ) plot of the measured voltage and 

phase (θ) as a function of mean of measured PMT voltage. The legend 

of the figure represents the fitting model used. Each data point 

corresponds to a sample size of 200. 

  
Figure 7: Schematic diagram of cylindrical gelatin phantom  

showing the dimensions of the imaging domain and the target 
Figure 7: A sample of calibrated data corresponding to wavelength 715  

nm collected from the gelatin phantom (schematic diagram is given in Fig.7).
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56 mm and 84 mm, were used to get the voltage in the range of 0-1 volts. This was repeated for all the 

wavelengths to ensure uniformity of performance in the signal, and to ensure that the trend was independent of 

wavelength and gain setting. 

 

Figure 6 gives a plot of error (σ(V)/V) as a function of measured PMT voltage for 785 nm wavelength. A 

similar trend was observed for other wavelengths. This plot also gives a deviation in phase (σ(θ)) in degrees for 

the same voltage. The lowest voltage that was measured was 0.001, which is in the noise floor. The measured 

deviations were 1% for lnA (amplitude) and 0.5
o
 for θ (phase). These values are similar to the ones reported in 

the literature (Mcbride et. al [8] reported 0.32% for the PMT voltage and 0.48
o
 in phase). A solid line shows 

these average deviation using 1/V
2
 fitting (following shot-noise model) in Fig. 6. Using this plot, the noise 

characteristics can be estimated using the measured PMT voltage.  Inclusion of these noise characteristics into 

the generalized least-squares (GLS) scheme combined with spectral and spatial priors lead to the reasonable 

estimates of target functional properties in the case of noisy phantom data (example data set from a cylindrical 

gelatin phantom (Fig. 7) is plotted in Fig. 8). 

 
HbT (µM) StO2 (%) H20 (%) a b 

Methods All Det 
Bkg Target Bkg Target Bkg Target Bkg Target Bkg Target 

Actual - 11 27 - - 95.0 95.0 - - - - 

LM NO 10.5 22.5 78.1 81.8 86.6 95.7 0.71 0.74 0.90 1.10 

GLS NO 10.2 22.4 80.1 81.9 88.1 92.8 0.91 0.89 1.05 1.16 

GLS YES 10.4 21.9 81.6 80.5 91.6 90.5 0.93 0.85 1.08 1.11 

Table-1: Summary of reconstruction results of phantom data (schematic diagram is given in Fig. 7)  using LM and GLS methods. The 

middle two rows are reconstruction results from the data in which noisy detectors (1, 2, 10, 14, and 15) data points were removed. The 

last row represents the case of GLS scheme using all the detectors data using noise modle, 1/V
2
 fit (legend of Fig. 6). Notations: HbT: 

Total Hemoglobin (in µM); StO2: Oxygenation Saturatin (in %); H20: Waiter content (in %); a: Scattering Amplitude; b: Scattering 

Power 

 

Typically in these cases of noisy data, an experienced researcher looks at the data and discards the noisy data 

points from the reconstruction scheme, which becomes very subjective. The aim was to include to the noisy 

characteristics into the reconstruction scheme using Fig. 6. When this was performed using all the data points, 

the estimates using GLS reconstruction scheme was with in the 20% error limit of the expected functional 

properties. In this case of using all the data points, traditional reconstruction algorithm (Levenberg-Marquardt 

(LM)) did not give any meaningful solutions. These results are summarized in Table-1. The important 

conclusion from this phantom study is that the GLS procedure (developed as part of this project) is able to give 

reasonable estimates of the functional properties even when the data from the noisy detectors is used. Where as 

the traditional algorithms are not able to converge to any meaningful solution when the noisy detectors data was 

used, and a subjective way of removing the noisy detectors data was able provide reasonable estimates.  

 

All these results along with extensive simulation studies are presented in the chapter-6 of Ref. [9]. We are 

panning to submit a journal paper with these results and analysis.    

 

Key research accomplishments 
 

• Optimization of computational aspects of DOT image reconstruction (especially, data-collection 

strategy) (Aim-1). 

• Effective way of incorporating structural priors into NIR-DOT image reconstruction procedure (part of 

Aim-2) 

• Generalized least squares minimization formulation and extensive testing of the algorithm in simulations 
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(part of Aim-2). 

• Development of a computationally efficient algorithm for under-determined three-dimensional DOT 

problems (part of Aim-2). 

• Inclusion of noise characteristics of the experimental data in the Generalized least squares algorithm to 

improve the estimation capability of 3D functional images in the case of highly noisy data (modified 

Aim-3).     

 

Reportable outcomes 
  

All the formalities (including thesis defense) for the award of the Ph.D. degree for the P.I. is completed 

(Appendix contains the completion certificate), where the Ph.D. degree will be awarded at the commencement 

on June 8, 2008. Due to this training, P.I. is employed as a post-doctoral research associate in the division of 

medical physics, Department of Radiation Oncology, Washington University School of Medicine in St. Louis.  

 

This funding has lead to 7 journal publications (including 4 first author publications from the P.I.), 6 refereed 

international conference proceeding (including 2 first author proceeding from the P.I.), and 5 international 

conference presentations (including 3 presented by the P.I.). These are listed in separate categories in 

chronological order below. 

 

Journal Publications: 

1. P. K. Yalavarthy, D. R. Lynch, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Implementation of a 

computationally efficient least–squares algorithm for highly underdetermined three-dimensional diffuse optical 

tomography problems,” Med. Phys. 2007 (submitted). 

2. M. Eames, B.W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for 

diffuse optical image reconstruction,” Opt. Express 15, 15908–15919 (2007). 

3. S. Srinivasan, B. W. Pogue, C. M. Carpenter, P. K. Yalavarthy, and K. D. Paulsen, “A boundary element 

approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34 4545–4557 (2007). 

4. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural 

information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 

8043–8058 (2007). 

5. A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Simulated interstitial fluid 

pressure in soft tissue as a result of externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 

(2007). 

6. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-Matrix Structured Regularization 

Provides Optimal Generalized Least-Squares Estimate in Diffuse Optical Tomography,” Med. Phys. 34, 2085–

2098 (2007). 

7. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near 

infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction 

basis,” Opt. Express 14, 6113–6127 (2006). 

 

Refereed Conference Proceeding: 

1. P. K. Yalavarthy, R. Langoju, B. W. Pogue, H. Dehghani, A. Patil, and K. D. Paulsen, “Cramer-Rao 

estimation of error limits for diffuse optical tomography with spatial prior information,” Proc. of SPIE 6434 

(BiOS-2007 in Photonics West-2007, 20-25 January 2007, San Jose, California), 643403:1-13 (2007). 

2. S. C. Davis, H. Dehghani, P. K. Yalavarthy, B. W. Pogue, K. D. Paulsen, “Comparing two regularization 

techniques for diffuse optical tomography,” Proc. of SPIE 6434 (BiOS-2007 in Photonics West-2007, 20-25 
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January 2007, San Jose, California), 64340X:1-12 (2007). 

3. H. Dehghani, C. M. Carpenter, P. K. Yalavarthy, B. W. Pogue, and J. P. Culver, “Structural a-priori 

Information in near infrared optical tomography,” Proc. of SPIE 6431 (BiOS-2007 in Photonics West-2007, 20-

25 January 2007, San Jose, California), 64310B:1-7 (2007). 

4. A. Darling, P. K. Yalavarthy, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure due to externally 

applied force in breast tissue,” Proc. of SPIE 6431 (BiOS-2007 in Photonics West-2007, 20-25 January 2007, 

San Jose, California), 64310Z:1-10 (2007). 

5. P. K. Yalavarthy, C. Carpenter, S. Jiang, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Incorporation of 

MR structural information in diffuse optical tomography using Helmholtz type regularization,” Proc. of OSA 

Biomedical Topical Meetings, OSA Technical Digest, SH29:1-3, Optical Society of America, Washington, DC 

(2006). 

6. C. Carpenter, B. W. Pogue, P. K. Yalavarthy, S. Davis, S. Jiang, H. Dehghani, and K. D. Paulsen, “Analysis 

of 3-dimensional reconstruction in a MR-guided NIR tomography system,” Proc. of OSA Biomedical Topical 

Meetings, OSA Technical Digest, SH33:1-3, Optical Society of America, Washington, DC (2006). 

 

Conference Presentations: 

1. P. K. Yalavarthy, B. W. Pogue, and H. Dehghani, “A generalized least-squares minimization method for 

near infrared diffuse optical tomography,” Department of Defense Era of Hope Meeting, Baltimore, Maryland 

25-28 June 2008 (submitted).  

2. B. W. Pogue, C. M. Carpenter, P. K. Yalavarthy, S. C. Davis, J. Wang, and K. D. Paulsen, “Recovery of 

hemoglobin images from MR-guided NIR spectroscopy,” SPIE Medical Imaging-2007, San Diego, California, 

17-22 February 2007 (Oral presentation). 

3. B. W. Pogue, C. M. Carpenter, P. K. Yalavarthy, H. Dehghani, S. Jiang, X. Wang, W. A. Wells, C. A. 

Kogel, S. P. Poplack, J. B. Weaver, and K. D. Paulsen, “Proposed methods to improve false positive and false 

negative rates in MR breast imaging, through combination with NIR broadband spectroscopy/tomography,” 

BiOS-2007 in Photonics West-2007, San Jose, California, 20-25 January 2007 (Invited oral presentation). 

4. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, S. Jiang, and K. D. Paulsen, “Generalized Least-Squares 

minimization for Magnetic Resonance guided Diffuse Optical Tomography,” BiOS-2007 in Photonics West-

2007, San Jose, California, 20-25 January 2007 (Oral presentation). 

5. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, S. Jiang, and K. D. Paulsen, “Outline of the Weighted Least-

Squares minimization for Diffuse Optical Tomography,” Network for Translational Research Optical Imaging 

Network (NTROI) Retreat, Hyatt Regency Newport Beach, CA, June 22-24, 2006 (Poster presentation). 

 

Conclusions 
 

This project was part of continuing effort to develop methods/algorithms for three-dimensional alternative 

breast imaging modalities at Dartmouth. Some important miles stones in the project include completing the 

work on optimizing the NIR data-collection strategies in 3D (completing Aim-1). A framework to incorporate 

the spatial-priors in to the NIR image reconstruction procedure was developed and also proven to be effective 

even in case of imperfect spatial priors, which is part of Aim-2.  Moreover, a new algorithm that takes into 

account noise characteristics of the instruments was developed and tested extensively in the simulation studies. 

A computational efficient algorithm which reduces the computational cost of three-dimensional imaging 

problem by at least a factor of three was also developed. This algorithm was compared with the traditional 

reconstruction algorithms and was proven to be effective in the phantom case (completing Aim-2). Rather than 

finding an effective way of displaying optical images (Aim-3), which could be achieved using a commercial 

platform (available to NIR imaging group from Siemens as a part of network effort funded by NIH (U54 
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CA105480: Network for Translational Research in Optical Imaging)), incorporation of noise characteristics into 

the three-dimensional optical image reconstruction scheme in the case of experimental data was performed and 

it was tested using phantom data leading to reasonable estimates (20% of expected values) of functional 

properties of the gelatin phantom (completing the modified Aim-3).  
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Abstract:  The image resolution and contrast in Near-Infrared (NIR) 
tomographic image reconstruction are affected by parameters such as the 
number of boundary measurements, the mesh resolution in the forward 
calculation and the reconstruction basis. Increasing the number of 
measurements tends to make the sensitivity of the domain more uniform 
reducing the hypersensitivity at the boundary. Using singular-value 
decomposition (SVD) and reconstructed images, it is shown that the 
numbers of 16 or 24 fibers are sufficient for imaging the 2D circular domain 
for the case of 1% noise in the data. The number of useful singular values 
increases as the logarithm of the number of measurements. For this 2D 
reconstruction problem, given a computational limit of 10 sec per iteration, 
leads to choice of forward mesh with 1785 nodes and reconstruction basis of 
30×30 elements. In a three-dimensional (3D) NIR imaging problem, using a 
single plane of data can provide useful images if the anomaly to be 
reconstructed is within the measurement plane. However, if the location of 
the anomaly is not known, 3D data collection strategies are very important. 
Further the quantitative accuracy of the reconstructed anomaly increased 
approximately from 15% to 89% as the anomaly is moved from the centre 
to boundary, respectively. The data supports the exclusion of out of plane 
measurements may be valid for 3D NIR imaging. 
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1. Introduction 

In the recent years, there has been a heightened interest in near-infra-red (NIR) optical 
tomography, for applications such as diagnostic breast cancer imaging [1-3] and for brain 
function assay [1, 4, 5].  In NIR tomography, the aim is to reconstruct interior optical 
properties of the tissue under investigation from a finite, yet incomplete set of transmission 
measurements taken at the tissue external boundaries. The reconstructed optical properties can 
give clinically useful information regarding tissue physiology and state, such as chromophore 
concentration and oxygen saturation. Typically, the optical source light used for excitation in 
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NIR studies is delivered through optical fibers and the transmitted light is also collected 
through the same or additional fibers which are in contact with the external surface of the 
tissue. Using these measurements, distributions of wavelength dependent absorption and/or 
scattering coefficients of the tissue are reconstructed using a model-based iterative algorithm. 
NIR studies have the advantage of being non-invasive, non-hazardous and can therefore be 
applied repeatedly to investigate functional changes in tissue over a prolonged time. 

The dominance of light scattering in tissue at NIR wavelengths makes optical tomography 
inherently more difficult in the sense that light becomes diffuse within millimeters of travel, 
reducing the resolution of the reconstructed images. The image reconstruction procedure (i.e. 
the inverse problem) is non-linear, ill-posed and ill-conditioned [6] and to improve image 
reconstruction, the number of measurements are generally increased, to increase the amount 
of independent information. However due to experimental set-up constraints, such as the light 
collection strategy, source and detector fiber size and the imaging domain geometry, the total 
number of boundary measurements that can be taken from is often quite limited. In addition, 
there are constraints on the data acquisition and computation time that need to be considered 
for the specific application in which NIR light is used. 

There have been some limited studies [7-11] on optimization of the fiber positions and 
measurements to get the best possible image resolution and contrast in NIR tomography. 
More specifically, Culver et. al [11] have showed that singular value decomposition (SVD) 
analysis of the weight matrix (also known as the Jacobian or sensitivity matrix) can be used to 
optimize detector placement in the reflectance and direct transmittance geometries of a 
homogeneous slab medium, and indicated that this could be extended to arbitrary geometries 
with heterogeneous tissue volumes. However, there remain many unknowns regarding the 
appropriate number of measurements required to get a sufficiently good image given the 
practical constraints of measurement number and image recovery algorithm, which is the 
subject of this paper. Furthermore, few studies have specifically investigated the effect of 
mesh resolution in both the forward and inverse calculations and very little is known about the 
quantitative increase in accuracy which is a direct result of mesh resolution and appropriate 
reconstruction bases. This work is an attempt to answer questions regarding the limited 
increase in number of measurements, more specifically benefits from the increased amount of 
information as well as investigating aspects that will have effects on image reconstruction 
procedure and resolution as well as the contrast of the reconstructed image. 

In the present work, both a two dimensional (2D) circular domain and a three dimensional 
(3D) cylindrical geometry are investigated since most investigations to date have used either 
of these geometries for system and algorithm evaluation. Initially the effect of mesh resolution 
is investigated in the forward problem by comparing the Jacobian cross-section for various 
resolution 2D meshes to show improvements in numerical accuracy. Next the effect of 
increasing the number of measurements upon the resulting reconstructed image using 
singular-value analysis is investigated. Results regarding the optimized reconstruction basis 
are presented for the given 2D model, and the impact in the Root Mean Square (RMS) error of 
increased spatial sensitivity is presented as a function of increasing number of measurements. 
Finally a case-to-case analysis is shown by increasing the number of measurements in image 
reconstruction procedure and comparing the underlying image errors within the reconstructed 
images. 

Since 3D problems have more degrees of freedom (unknown parameters), they are highly 
ill-determined as compared to the 2D problem.  But NIR optical tomography utilizes the data 
from the 3D tissue volumes and therefore should be treated as a 3D imaging problem. Since 
light propagation in tissue is physically spread in all directions, 3D models are known to be an 
accurate prediction of the light fluence, whereas 2D models are simple yet inaccurate at 
predicting the interior fluence distributions [4, 12-17]. In order to further advance NIR optical 
tomography into a suitable and accurate clinical imaging modality, it is important to develop 
fully 3D imaging tools, yet, the major challenge in this task is to determine how to acquire 
large data sets which overcome the inherent limitation of the 3D problem being ill-determined 
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[18]. That is, to improve image reconstruction quality in 3D, the number of measurements can 
be increased as mentioned in 2D case, even here these measurements are quite limited.  

For the chosen 3D cylindrical geometry, for example, acquiring experimental data from 
three different planes of fiber setup improves the reconstructed image of the entire domain as 
compared to one single plane of data, as there are greater numbers of measurements providing 
a larger set of sampling of the entire volume of interest. There are many strategies to increase 
measurement number and it is not clear which present the best improvement in the final 
image. Specifically, this work examines effects of different measurement strategies for 3D 
NIR tomography by presenting and quantifying the underlying effects of using a single plane 
of tomographic data as compared to three planes of tomographic data. Within the latter case, 
this work also presents, quantifies and discusses the benefits, limits and losses due to the 
measurement of in-plane data as compared to out-of plane data and will compare and contrast 
these data collection geometries from the prospective of gain and loss in the reconstructed 
image quality and respective computation time. 

2. Methods 

Conventional numerical methods for the forward calculations in NIR imaging use the Finite 
Element Method (FEM), which is considered as a flexible and accurate approach to modeling 
heterogeneous domains with arbitrary boundaries. Light transport in scattering tissue can be 
accurately described by the Diffusion Approximation (DA) to the Radiative Transfer Equation 
(RTE) [19]: 

0- . ( ) ( , ) ( ) ( , ) ( , )a
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r r r r q r
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where ( , )r ωΦ is the photon density at position r and modulation frequency ω  (100 MHz in 

this work), and κ = 1/[3(μa + μs
/)], the diffusion coefficient, where μa and μs

/ are the 
probabilities per unit length of absorption and transport scattering, respectively, and 

0 ( , )q r ω is an isotropic source term. The Robin (Type III) boundary condition is used which 

best describes the light interaction from a scattering medium to the external air boundary [20]. 
The calculated boundary data values with a frequency domain system are the amplitude and 
phase of the signal, from which the diffusion and absorption coefficients can be 
simultaneously reconstructed.   

For the inverse problem, a small change in boundary data is related to a small change in 
optical properties through the Jacobian matrix of values. The Jacobian matrix for 
reconstructing both the unknowns using two different data-types is calculated using the 
Adjoint-method [21], and has dimensions of (2×S×D) by (2×N), where S and D are the 
number of sources and detectors corresponding to each source respectively. N represents the 
number of nodes in the mesh used in the forward calculation. Here the Jacobian maps the 
changes in log amplitude and phase (2xSxD) to both absorption and diffusion changes at each 
node of the FEM model (2xN). The Jacobian which maps the change in detected signal to 
image space has four parts: 
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In all our analysis, only the J2 section is considered (dimension of (S×D) by N), which maps a 
small change in the absorption coefficient to a small change in measured log intensity of the 
signal. Since all kernels of the complete Jacobian show similar results, the discussion is 
limited to the results of J2, and shall henceforth be referred to as J.  

In the reconstruction procedure presented, a modified Levenberg-Marquadt algorithm is 
used for calculating the estimates of μa, which is an iterative procedure [10] solving:  
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[Δμa] = [JTJ + λI]-1. JTb       (3) 

Here [Δμa] is an update vector for the absorption coefficient, I is the identity matrix and λ is a 
regularization parameter. Also, b = [y - F(μa)], where y is the measured (or simulated) 
heterogeneous boundary data and F(μa) is the forward data for the current estimate of μa. In 
all of the presented work using simulated data, 1% noise was added to the amplitude, which is 
a typical noise observed in experimental data [2].  

For the 2D analysis a circular model with a diameter of 86 mm centered at (0, 0) and with 
homogeneous optical properties of μa = 0.01 mm-1 and μs

/ = 1.0 mm-1 is considered. The light 
collection/delivery fibers are arranged in a circular equally spaced fashion, where one fiber is 
used as the source while all other fibers are used as detectors, to give ‘P’ number of 
measurements (where P= M(M-1), where M is number of fibers). The source is a Gaussian 
source of Full Width Half Maximum (FWHM) of 3mm, and it is placed one transport 
scattering length within the external boundary.  
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Fig. 1. Schematic diagram of data collection geometry used for the 3D cylindrical model. 

For the 3D analysis, a cylindrical medium with a diameter of 86 mm having height of 100 
mm centered at (0, 0, 0), with homogeneous optical properties of μa = 0.01 mm-1 and μs

/ = 1 
mm-1 is used (Fig. 1). The light collection/delivery fibers are arranged in a circular and 
equally spaced fashion and are in either a single plane of 16 fibers or 3 planes of 16 fibers per 
plane, totaling 48 fibers. Specifically three different strategies for data collection are 
considered: 

(a). Single layer data: The 16 fibers are arranged in a circular and equally spaced fashion in a 
single Layer-I (Fig. 1), where one fiber is used at a time as the source while all other fibers are 
used as detectors, to give 240 (16x15) amplitude measurements. 

(b). Three layers of in-plane data: The 48 fibers are arranged in a circular equally spaced 
fashion in all three layers (Layers-I, II & III in Fig. 1), giving 16 fibers per plane, where one 
fiber is used at a time as the source while only those fibers in the same “source fiber layer” are 
used as detectors, to give 720 (3x16x15) amplitude measurements. 

(c). Three layers of out-of-plane: Same as above, except when one fiber is used at a time as 
the source, all other fibers in all three planes are used as detectors. This leads to 2256 (48x47) 
amplitude measurements. 

For the image reconstruction process, an iterative update to the Jacobian matrix was 
computed, after each successive image estimation. At each iteration, the objective function 
was evaluated to estimate the projection error. The reconstruction procedure was then stopped 
when the projection error decreased by less than 3%. 
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Fig. 2. The sensitivity (Jacobian) contour plot of log amplitude and μa for a source (S) and 
detector (D), which are diagonally opposite to each other as shown, calculated on a circular 
mesh of 9664 nodes. 

2.1. 2D Mesh Resolution 

In FEM the domain is divided into finite discretized sub-domains wherein the numerical 
accuracy and stability depends highly on this discretization (mesh resolution). Since the 
Jacobian represents the sensitivity of the detected signal to a small change in optical 
properties, the numerical accuracy of this value is crucial component of the image 
reconstruction problem, to study the effect of mesh resolution in 2D case, we choose different 
resolution meshes (with number nodes ranging from 150 to 4617 nodes) along with a high-
resolution mesh of 9664 nodes for calculation of Jacobian. The Jacobian with a diagonally 
opposite source and detector is used, as shown in Fig. 2, from which the RMS error is 
calculated for each mesh with respect to the high-resolution mesh. The RMS error is 
calculated by interpolating the Jacobian of each mesh unto a uniformly distributed grid, 
allowing direct comparison of each result. Since the Jacobian represents the sensitivity of the 
detected signal to a small change in optical properties, the numerical accuracy of this value is 
a crucial component of the image reconstruction problem. Here the highest resolution mesh 
provides the most accurate and numerically stable solution, therefore the calculated RMS 
error indicates the numerical accuracy of each lower resolution mesh. The computation time 
taken for calculation of Jacobian and forward data is also noted as a function of mesh 
resolution. All the computations were carried out on Pentium-IV 2.5 GHz processor with 2 
GB of RAM. 

2.2. Singular-Value (SV) analysis 

Singular-Value (SV) analysis for the Jacobian matrix is explained in detail elsewhere [10]. 
Using SV-analysis, the Jacobian is decomposed into: 

 
 J = USVT                                                          (4) 

where, U & V are orthonormal matrices containing the eigenvectors of J and S is a diagonal 
matrix containing the singular values of J. Vectors of U and V correspond to the modes in the 
detection space and image space, respectively, while the magnitude of the singular values in S 
represents the importance of the corresponding eigenvectors in U and V. More nonzero 
singular values indicating more modes are effective in between the two spaces, which bring 
more detail and improve the resolution in the space. There are normally P nonzero singular 
values in the diagonal matrix and these values are sorted in decreasing order. Typically only 
those singular values above the noise level (in this study, 1 % noise in amplitude) are used, as 
they contain the only useful information in the matrix. Thus, it is possible to determine 
whether increasing the number of measurements gives rise to an increase in the number of 
useful singular values, which indicates improvement in the recovered images. 
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In 2D, this analysis was applied to two separate cases: (1) a homogeneous case with optical 
properties as given before, and (2) a heterogeneous case which mimics breast optical 
properties [22], with properties of fibro-glandular layer being μa = 0.003 mm-1 and μs

/ = 0.95 
mm-1 and having diameter of 66 mm and fatty layer surrounding it having μa = 0.006 mm-1 

and μs
/ = 1.1 mm-1 with a thickness of 20mm. The number of useful singular values above the 

noise level were calculated as the number of measurements was increased. The mesh that was 
found to have an optimum resolution from the previous analysis of the Jacobian (Sec. 2.1) was 
used for these analysis. For both these cases, the percentage of useful measurements with 
respect to total number of measurements was calculated as:  

 
Useful number of singular values

Useful measurements (in %) = x100    
Total number of singular values

⎡ ⎤
⎢ ⎥
⎣ ⎦

  (5) 

Additionally, the effect of mesh resolution was studied for its impact on the number of 
independent boundary data points with an increase in number of measurements by calculating 
the rank of the Jacobian, which is defined as the maximum number of linearly independent 
rows/columns of a given matrix. As each row of the Jacobian indicates each measurement, the 
rank of the Jacobian indicates the total number of independent measurements. 

Image reconstruction consists of two separate, yet equally important parts; the forward 
model and the inverse model. For the forward model, the mesh used in FEM needs to be such 
that to ensure numerical accuracy, as already discussed. For the inverse problem, however, the 
goal is to reduce the number of unknowns for the iterative update by the use of a 
reconstruction basis [23]. Therefore it is important to investigate the effects of various 
reconstruction basis degrees of freedom on the reconstruction. Various reconstruction basis 
can be used, such as second mesh basis [24], pixel basis [23] or adaptive [25, 26] . With this 
goal, a reconstruction basis was optimized for the given 2D problem by looking at the number 
of useful singular values for various pixel (reconstruction) basis. A linear pixel basis of having 
100 (10 by 10) elements to 1600 (40 by 40) elements was used and the Jacobian was mapped 
to this basis for the analysis. 

Table 1. The RMS error (with respect to the fine mesh of 9664 nodes) in the Jacobian cross-section from center to 
boundary, (indicated by dashed line in Fig. 2) at y = 0 mm. This is tabulated as a function of mesh resolution, or 
number of nodes in the mesh. Last two rows show the computation time taken for calculation the Jacobian and 

Forward data for 16 source-detector pairs (240 measurements). For the fine mesh of 9664 nodes the computation time 
for Jacobian and Forward data is 98.1 sec and 28 sec respectively.  

Nodes 150 425 1360 1785 2683 3047 3569 4617 
RMS error 60.56 27.84 5.06 4.84 2.57 2.15 1.85 1.07 
Jacobian 

Computation 
Time (in Sec.) 

1.1 2.5 7.8 10.1 15.2 17.8 20.8 38.1 

Forward data  
Computation 
Time (in Sec.) 

0.1 0.3 0.9 1.2 1.9 2.2 2.6 9.8 

2.3. Reconstruction examples 

In order to understand the effect of increasing the number of measurements on total sensitivity 
for a given 2D model the magnitude of the Jacobian was examined as a function of number of 
measurements. To achieve this, the horizontal cross-section of the whole Jacobian was 
plotted, which was summed up over all measurements, from center to boundary, and 
examined as the number of measurements increased. Since the Jacobian provides relative 
sensitivity, a cross-section plot was normalized in each case with respect to its magnitude at 
the center of the model and calculated as a function of number of measurements (56 to 4032). 
For the 3D model, the cross-section of the total Jacobian was normalized with respect to its 
magnitude at the center of the model (as in the 2D case), for each case of the three different 
data collection strategies. Finally, for the 2D model, only the absorption coefficient was 

(C) 2006 OSA 26 June 2006 / Vol. 14,  No. 13 / OPTICS EXPRESS  6119



reconstructed with an increasing number of measurements of an object with absorption 
inhomogeneity at various positions of domain using log of amplitude data. A circular 
absorption anomaly of diameter of 10 mm was used having a contrast of 2:1 compared to its 
background. We used the optimal forward mesh along with optimal reconstruction basis for 
the reconstruction procedure. A total of 2 positions of absorption inhomogeneity were 
considered with it center at (x,y) of (0, 0), and (30, 0) for various number of measurements 
starting from 56 to 4032. 

 
  

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

Fig. 3. Singular value analysis of homogeneous and heterogeneous 2D circular models. (a). 
Plot of the useful singular values versus number of measurements. (b). Plot of percentage of 
useful measurements versus the total number of measurements. (c). Plot of the Rank versus 
number of measurements is shown for a range of mesh nodes. (d). Plot of the number of useful 
singular values versus number of measurements is shown, for various reconstruction bases. 

 
For the 3D case, a spherical absorption anomaly of diameter of 15 mm was assumed 

having a contrast of 2:1 compared to its background. A total of 3 positions of absorption 
inhomogeneity were considered with its center at x, y and z of (0,0,0), (30,0,0) and (30,0,10). 
The anomalies were reconstructed using the noise added data (1% in amplitude) simulated 
from the three different fiber location strategies. Full Width at Half-Maximum (FWHM) was 
measured for each of the peaks in the X-Y and Z-Y planes as well as the total computation 
time for reconstruction process. 

Table 2. The number of useful measurements above the 1% expected noise level, is shown for the 2D circular and 3D 
cylindrical models, having 16 source and detector fibers with one or three planes of data collection.  The two upper 
rows have only 1 plane of collection, whereas the 2nd last row has 3 planes of collection but not between the planes, 

and the last row has 3 planes of data collection with complete out of plane measurements. 

 Number of 
Unknowns 

Number of 
Measureme

nts 

Number of 
Useful Singular 

values 

Useful 
measurements 

(%) 

Magnitude of largest 
singular value 

2D 1785 240 91 37.92 796.4 

3D 1layer 20163 240 107 44.58 117.1 

3D 3layer in-
plane 20163 720 269 37.36 164 

3D 3layer out-
of-plane 20163 2256 328 14.54 304.6 

3 Results 

Figure 2 shows a sensitivity plot of log amplitude and the absorption coefficient using a 2D 
mesh with 9664 nodes for a source and detector which are diagonally opposite to each other. 
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Table-1 shows the RMS error with respect to the high resolution mesh in the horizontal cross-
section (as indicated by the dotted line in Fig. 2) using the method described earlier. The RMS 
error calculated here was also calculated along different cross-sections of the model and a 
similar trend was seen. The mesh with 1785 nodes was found to have an RMS error of less 
then 5% as compared to the finest mesh. 

 
Fig. 4. Comparison of Jacobian cross-section with respect to measurement number. (a). The 
horizontal cross-sectional plot of the sum of 2D circular Jacobian matrix values, from center to 
the boundary at y = 0 mm. (b) The normalized sum of 2D circular Jacobian matrix values, with 
respect to the value at the center (at x = 0 mm, y = 0 mm). The legend gives number of 
measurements associated with each plot.  

The 2D mesh with 1785 nodes was used for the calculation of the Jacobian and the 
expected noise level in the amplitude measurements was assumed to be 1%. For both the 
heterogeneous and homogeneous 2D cases, the number of useful singular values above the 
noise level were calculated, and the results are shown in Fig. 3(a). Figure 3(b) is a bar chart 
showing useful measurements in percentage [given by Eq. (5)] for each set of measurements. 
Figure 3(c) is a plot of the rank of the Jacobian versus the total number of measurements for 
meshes having different resolution starting from 150 to 3569 nodes versus number of 
measurements. The Jacobian calculated is also mapped onto a reconstruction (pixel) basis 
ranging from 10 × 10 to 40 × 40. The number of useful singular values as function of pixel 
basis elements, for each set of measurements, are plotted in Fig. 3(d). Finally, for the 2D case, 
Fig. 4 shows the total sensitivity distribution at the mid-axis cross-section, as a function of the 
number of measurements.  Table 2 shows the number of useful singular values of the 3D 
model Jacobian which are above the noise level (1%) for the three different strategies, and 
indicates the effective number of measurements which will be contributing to the 
reconstructed image space and quality. The number of useful singular values is higher for the 
three layer out-of-plane strategy. The useful percentage of measurements is higher for the 3D 
single plane of data, whereas the condition number is very high for the 3D three-layer out of 
plane case. Similar data is also included using the 2D circular geometry for comparison 
purposes, with 240 measurements and the same corresponding optical properties as the 3D 
model. 

The plots of the 3D Jacobian magnitude as normalized to the value at the center of the 
model are shown in Fig. 5. These plots shows that, all the three strategies of data collection in 
3D are hypersensitive (in X & Y direction) at the boundary. Moreover this is pronounced for 
the 3D single-plane case. In the Z-direction (not shown) it was found that, as expected that, 
the sensitivity decreases as the position moves from centre to boundary for all the three cases.  
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Z= 0 mm Z= 5 mm 

  
Z= 10 mm Z= 15 mm 

Fig. 5. The normalized cross-section in the X-Y plane, showing the total sensitivity across the 
dotted line in Fig. 2, from x= 0 mm to x = 43 mm (center to boundary) at Y = 0 mm normalized 
with respect to the sensitivity at the origin, (i.e. X = 0, Y = 0 & Z = 0 mm). 

 

Original μa 56 240 552 992 

 
1560 2256 3080 4032  

 

 
 

 
Fig. 6. The reconstruction of the μa distribution, using noisy simulated data of log amplitude, 
for a circular object with an absorbing inhomogeneity at the center. Different numbers of 
measurements were used as denoted above each image, ranging from 56 up to 4032 data points.  
The forward mesh was 1785 nodes and the pixel basis consisted of 30x30 elements. The 
original μa distribution is shown as the first image. 

The 2D reconstruction of a circular object with a centralized absorption anomaly of 
diameter of 10mm using different number of measurements, along with original μa 
distribution, is shown in Fig. 6. The contrast of the inhomogeneity to background is 2:1 and 
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for these reconstructions a pixel basis of 30 x 30 elements is used, with a forward mesh 
consisting of 1785 nodes. Figure 7 shows the plot of logarithm of rms error in the horizontal 
cross-section (as sown by dotted line in Fig. 6) as a function of measurement number. The 
legend of the figure gives the position of the inhomogeneity (diameter of 10mm).  

Table 3 summarizes the results of the 3D reconstruction. Figure 8(a) shows the 
reconstructed absorption coefficient distributions for a spherical absorption inhomogeneity 
(diameter of 15 mm) located at (0, 0, 0) with a contrast of 2:1 to background, using the data 
collected from the three strategies. Figure 8(b) shows the results of the same effort with a 
spherical inhomogeneity located near to the boundary (30, 0, 0). The results show that the 
quantitative values of the anomaly increases as the anomaly is moved from centre to boundary 
in X & Y direction. The anomaly for this location is reconstructed with 89% quantitative 
accuracy compared to the 15% accuracy for central location. Finally the reconstructed 
absorption coefficient distribution for a spherical absorption inhomogeneity (diameter - 15 
mm), which is centered at (30, 0, 10) are shown in Fig. 8(c) and it can be seen that single layer 
case reconstructed the anomaly in the wrong location. Here, both the in-plane and out-of-
plane strategies are able to give up to 84% quantitative accuracy (Table 3). 
 

 
Fig. 7. A plot of logarithm of rms error in the horizontal cross-section of μa at y = 0 (as shown 

in original μa distribution of Fig. 6) versus number of measurements for various positions of an 
absorption inhomogeneity.  These calculations used 1785 nodes in the mesh of the forward 
problem and a pixel basis of 30x30 elements in the reconstruction.  

4 Discussion 

The decrease in the RMS error for the horizontal cross-section of the 2D Jacobian for a given 
source-detector (diagonally opposite each other) for a mesh greater than 1500 nodes as 
compared to 9664 nodes (Table-1) is below 5%. It should be noted that the other kernels of 
the Jacobian, for example J3 ( θ

κ
∂
∂

), showed better accuracy (2%) when the mesh had 1785 

nodes or greater. As with many iterative reconstruction problems, optical tomography requires 
repeated forward calculations and re-computation of the Jacobian, thereby increasing mesh 
resolution which further implies increase in computational time, which is clearly evident from 
last two rows of Table 1. A computation limit of 10 seconds per iteration, lead to a choice of 
mesh resolution with 1785 nodes for the forward problem in two-dimensional case, and 
extending this same level of resolution to 3D would require nearly 80,000 nodes, which is 
near the limit of what can be done computationally.  Thus much of the 2D study presented 
here was run at the level of 1785 nodes.  Since the computation of the Jacobian using the FEM 
relies on the discretization of the domain and the accuracy of the numerical model depends on  
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Table 3. The computation time and accuracy of the 3D reconstruction is shown for the three 
different data collection strategies, along with three different locations of the anomaly for each. 

 

Strategy 
Position of 

anomaly 
(original) 

Iterati
ons 

Total 
Computation 

time (s) 

Quantitative 
accuracy (%) of 

the reconstructed 
anomaly 

FWHM 
along X-

axis (mm) 

FWHM 
along 
Z-axis 
(mm) 

(0,0,0) 11 3179 15% 16.1 25.2 
(30,0,0) 14 4046 89% 17.2 23.3 3D: 1layer 

(30,0,10) 10 2890 - - - 
(0,0,0) 14 8022 14% 16.5 25.3 

(30,0,0) 14 8022 80% 13.1 18.7 
3D 3layer in-

plane 
(30,0,10) 12 6876 110% 11.2 18.6 

(0,0,0) 6 10926 11% 23.7 24.1 
(30,0,0) 9 16389 78% 13.6 18.9 3D 3layer 

out-of-plane 
(30,0,10) 8 14568 84% 13.2 18.7 

 
 

 
3D 1-plane 3D 3layer: inplane 3D 3layer: out of 

plane 
 

(a) 

   

0.012 

 
0.008 

(b) 

   

0.019 

 
0.008 

(c) 

  

0.022 

 
0.008 

Fig. 8. The reconstructed absorption coefficient distribution for the cylindrical object with a 
spherical absorption inhomogeneity (diameter of 15mm and contrast 2:1 with respect to 
background) located at x, y and z locations (a) (0,0,0), (b) (30,0,0) and (c) (30,0,10).  The three 
columns of images show the results achieved with the three different data collection schemes.   

(C) 2006 OSA 26 June 2006 / Vol. 14,  No. 13 / OPTICS EXPRESS  6124



this discretization and the associated integration of the shape functions, the resolution of the 
mesh and the associated optical properties will affect these results. For example, if the 
absorption coefficient is much smaller, then lower resolution meshes may be adequate, as the 
problem becomes more energy conserving, whereas for a higher absorption or scattering 
problem, a higher resolution mesh will be needed to ensure numerical accuracy within each 
FEM element for a lossy problem. Note also that for spectral reconstruction [3] with six 
wavelengths data, each iteration takes about 30 sec for 1785 nodes mesh. 

For a heterogeneous or homogeneous 2D case, number of useful singular values, which 
are above the noise level (1% in amplitude) showed similar trends and behavior with 
increasing numbers of measurements, as evident from Fig. 3(a). Further, the percentage of 
useful measurements (useful singular values) drops exponentially as the number of 
measurements is increased, Fig. 3(b). It is worth noting that for a heterogeneous model, since 
light propagation becomes more complex, and in this case more diffusive, the total number of 
useful measurements is slightly lower than that of homogeneous model. In this work, useful 
singular values are defined as the ones which are above noise level (1%). This is used only for 
optimizing the parameters used in the reconstruction procedure, but in the actual 
reconstruction procedure, regularization is used to reduce the condition number.  

Next, the effect of the 2D mesh resolution was investigated, for it’s impact upon the 
number of independent available measurements. From Fig. 3(c), it is evident that if the 
degrees of freedom (mesh resolution) in the forward problem is less than the total number of 
measurements, then increasing the number of measurements does not increase the number of 
independent measurements (i.e. the rank), since the rank is predominantly restricted by the 
number of nodes in the mesh. For example, given a system from which only 240 
measurements are available, any mesh which has a resolution of 240 nodes or more will give 
the same number of independent measurements. Therefore no additional measurements can be 
gained in terms of independent information by increasing the mesh resolution. Given a 2D 
mesh of 1785 nodes, for example, no considerable gain in independent data can be obtained 
when the number of measurements are increased above 1560 (40 source and detectors). At 
this point, it will be worth remembering that, in real time there is a physical constraint on 
number of measurements, because of the physical geometry and fiber size. To take an 
example, for a circular test phantom of 86 mm diameter and fiber of 6 mm diameter, no more 
than 40 fibers (which corresponds to 1560 measurements) can be arranged around the outer 
boundary of domain.  However this issue becomes more important perhaps for non-contact 
imaging systems in which the number of source-detector locations can be arbitrarily large. 

Using a 2D mesh of 1785 nodes, the effect of an increase in the reconstruction (regular 
pixel) basis resolution upon reconstruction was investigated [Fig. 3(d)]. An increase in pixel 
basis elements increases the number of useful singular values, but there is no significant 
improvement in the pixel basis from 30×30 (900 elements) to 40×40 (1600 elements). This is 
very interesting, since one would assume that fewer degrees of freedom for the inverse 
problem would produce a better solution. But although the problem may become better posed, 
the rank will be similar to that shown in Fig. 3(d). However, these results indicate the best 
possible resolution obtainable is by using the 40 x 40 pixel basis and again these results will 
be dependent on the physical problem dimension and level of complexity. Figure 4 shows that 
increasing the number of measurements for a 2D model increases the sensitivity of the 
problem, as evident from magnitude plot of the Jacobian (calculated from 1785 nodes mesh). 
Also shown in Fig. 4 is a normalized plot, relative to the central value, and indicates that for 
fewer number of measurements, the sensitivity is maximal near the boundary and lower at the 
center, as expected. By increasing the number of measurements, eventually the 
hypersensitivity near to the boundary reduced and the sensitivity became uniform regardless 
of distance from boundary. Finally, it is observed that increasing the number of measurements 
above 552 (24 sources and detectors) did not result in any further improvement in the 
sensitivity distribution.   

For the 3D model, Table 2 shows that three layers of out-of-plane measurements yields a 
higher number of useful singular values, but the useful percentage of the total measurements 
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was below 15%. An increase in number of measurements means more data acquisition time 
and more computation time. Non-linear iterative image reconstruction procedures in NIR 
imaging use repeated calculation of the forward data. Therefore increasing the number of 
sources and measurements substantially increases the computation time. In comparing the 
three layer in-plane and three layer out-of-plane data collection strategies, having more than 
three times the measurements in the latter case improves the number of useful singular values 
only by 22%. The improvement in the number of useful singular values is not significant if the 
data acquisition time is considered as well as the computation time. The magnitude of the 
singular values indicates the importance of that eigenvector in the image space, which is 
directly related to reconstructed image contrast that can be achieved. To compare the 
magnitude of the largest singular value, even though it is at its highest for the three layer out-
of-plane strategy, it should be noted that only 3 of the singular values are above 164 
(magnitude of largest singular value of 3D 3layer-in-plane), indicating that there would not be 
dramatic differences in the reconstructed image contrast in both these cases. If the magnitude 
of largest singular value in 2D and 3D are compared, in 2D the magnitude is higher, whereas 
the number of useful singular values are lower than 3D, indicating that the modes that 
contribute to image space are fewer and the quality of the reconstructed image in 2D will be 
lower than 3D. Even though magnitude of the singular values dictate the contrast, the singular 
vectors associated with it will tend to affect the reconstructed image quality. The magnitude of 
the largest singular value in the 3D 3layer cases are the same because of the smoothness of the 
singular vectors in the case of 3D 3 layer: out-of-plane, the reconstructed image quality is 
better than the rest cases (Fig. 8). The FWHM analysis also confirms this. 

It should be noted that there is always a trade-off between image quality and computation 
time. Therefore having out-of-plane data increases the image resolution, but taking into 
consideration the overall computation time, this improvement is perhaps not so significant. 
The computation time per iteration is high in the case of out-of-plane data (computation time 
per iteration: 2D problem – 70 sec; single-layer – 289 sec; three layer: in-plane – 573 sec; 
three layer: out-of-plane – 1821 sec).  

Figure 5 indicates that for the 3D model with a single measurement plane case, the total 
sensitivity is higher near the boundary, as compared to the three plane data case and by 
increasing the number of measurements the sensitivity near the boundary is decreased.  The 
results show that although the sensitivity is still higher at the boundary with three planes of 
data acquired, there is no significant difference in the sensitivity pattern observed between 
three layer in-plane or out-of-plane strategies.  

Since only one component of the full Jacobian matrix, J2 in Eq. (2), has been examined 
here, images have also been reconstructed for μa using log amplitude data for a 2D forward 
mesh of 1785 nodes and a reconstruction basis 30 by 30 pixel basis. Noisy simulated data 
were generated for various radial positions of the absorption inhomogeneity with a contrast of 
2, relative to the background and having a diameter of 10 mm. The log of RMS error was 
calculated as the difference in the original and the reconstructed horizontal cross-sections of 
each image (Fig. 6) as a function of number of measurements and these were plotted in Fig. 7. 
The results show that, as evident from Fig. 7, although there is a decrease in the RMS error as 
the number of measurements is increased, the improvement in the reconstructed images is not 
significant for measurements greater than 552 (corresponding to 24 fibers). However, for a 
central anomaly, the RMS error continued to decrease with increasing number of 
measurements, whereas for an anomaly near the boundary the RMS error does not improve 
more than 0.5% with respect to 552 measurements. 

To study the effect of data collection strategies on the 3D reconstructed image, the FWHM 
(Full Width at Half Maximum) of the peaks for all the reconstructed cases have been 
calculated and compared, Table 3. As the inhomogeneity moves from the centre towards the 
boundary, the FWHM reduces for both of the three layer cases and it remains approximately 
the same for the single layer case. For example, when the inhomogeneity is placed at (30,0,0), 
Fig. 8(b), the FWHM (in the X-cross section) values for single layer is 17.2mm and for the 
three–layers in-plane and out-of-plane strategies is 13.1mm and 13.6mm respectively. It is 
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evident from the reconstruction examples that the quantitative values of the inhomogeneities 
increase as the object moves from the centre to boundary, which is in close match with 
Jacobian analysis above. Reconstruction of absorption using single layer data, is not accurate, 
in a case where the anomaly is not presented in the imaging plane, such a case results are 
presented in Fig. 8(c). In this case, single-layer reconstructed image shows the inhomogeneity 
at a false position (reconstructed: (30,0,0); actual: (30,0,10)). Most of the 3D NIR studies 
indicate that, the quantitative accuracy of the images will be poor due the partial volume 
effect in three dimensions[13,16,17] and these quantification can be greatly improved by the 
use of more sophisticated regularization and the addition of penalty terms into Eq. (3).  

5 Conclusions 

In this investigation, the mesh resolution and numerical accuracy in the 2D and 3D forward 
problems were examined, using specific data-collection geometries. Several choices such as 
domain size, optical properties and anomaly position and size were kept fixed, relative to 
typical breast cancer imaging situations. It was shown that increasing the number of 
measurements increases the total amount of information available, and these specifically 
enhance the recovery of the central region of the model, regardless of dimensionality. Further, 
by increasing the number of measurements, the rank of the problem (i.e. amount of 
independent useful information) may not increase if the degrees of freedom (i.e. number of 
nodes in the mesh) are low. Reconstruction basis plays an important role in the inverse 
problem and it has been found that a pixel basis of 30 × 30 is optimal for a typical breast 
imaging problem.  

More specifically for a 3D imaging problem, this work has shown the benefits and 
drawbacks of multi-plane data collection as well as the use of in-plane versus out-of-plane 
data measurements strategies. It has been shown that the use of single-plane of data in a 3D 
model is perhaps adequate, in terms of image quality, computation time and data collection 
time, if the anomaly being imaged is within the plane of measurements. However, if prior 
information such as plane of interest is not known, it has been shown that multi-plane data is 
crucial. The use of in-plane and out-of-plane data has been addressed and is shown that 
although the use of out-of-plane data provides more independent and useful information for 
image reconstruction, the magnitude of this additional information does not provide enough 
advantages worth the data acquisition and image computation time. 

Finally it is worth noting that the 3D study has been limited to 16 source/detection fibers 
per plane. The addition of more measurement fibers and/or investigation of a different image 
reconstruction basis, such as those performed for the 2D problem can be easily extended for 
the presented 3D problem. The technique and analysis described here can be used as a tool to 
improve resolution and contrast, given prior information about the domain being imaged. This 
specific study was undertaken to better understand the parameters and capabilities of existing 
breast imaging system at Dartmouth and to focus on software improvements which may 
increase its recovery of lesion information. 
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Diffuse optical tomography �DOT� involves estimation of tissue optical properties using noninva-
sive boundary measurements. The image reconstruction procedure is a nonlinear, ill-posed, and
ill-determined problem, so overcoming these difficulties requires regularization of the solution.
While the methods developed for solving the DOT image reconstruction procedure have a long
history, there is less direct evidence on the optimal regularization methods, or exploring a common
theoretical framework for techniques which uses least-squares �LS� minimization. A generalized
least-squares �GLS� method is discussed here, which takes into account the variances and covari-
ances among the individual data points and optical properties in the image into a structured weight
matrix. It is shown that most of the least-squares techniques applied in DOT can be considered as
special cases of this more generalized LS approach. The performance of three minimization tech-
niques using the same implementation scheme is compared using test problems with increasing
noise level and increasing complexity within the imaging field. Techniques that use spatial-prior
information as constraints can be also incorporated into the GLS formalism. It is also illustrated that
inclusion of spatial priors reduces the image error by at least a factor of 2. The improvement of
GLS minimization is even more apparent when the noise level in the data is high �as high as 10%�,
indicating that the benefits of this approach are important for reconstruction of data in a routine
setting where the data variance can be known based upon the signal to noise properties of the
instruments. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2733803�

Key words: near infrared, diffuse optical tomography, inverse problems, least-squares minimiza-
tion
I. INTRODUCTION

Image reconstruction methods used in diffuse optical tomog-
raphy �DOT� are mainly dependent on the type of data, the
diffuse light model, and the number of available anatomical/
spectral priors. There are numerous reconstruction tech-
niques available in the literature depending on the
application.1–5 Yet despite the volume of work in this area
there is no single investigation with a direct comparison of
the least-squares �LS� minimization techniques using the
same implementation scheme, especially in terms of data
noise level and complexity in the test fields. Most of the
comparisons in the literature have been in terms of imple-
mentation of minimization and convergence rates of one or
two techniques at hand.1–5 This work addresses this problem
and compares minimization methods �more specifically dif-
ferent types of regularization� with the same implementation
scheme for a direct quantitative comparison. Moreover, us-
age of weight matrices in the regularization which include
the variance and covariance properties of data and image

space are extensively explored here. A new covariance form
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borrowed from meteorological studies is introduced and
proven to be effective for reconstructing highly noisy data in
the generalized theoretical frame work.

Near infrared DOT involves reconstructing images of op-
tical properties from transmission measurements using wave-
lengths from 650–1000 nm to interrogate tissue.1,6–8 Optical
absorption and scattering images obtained using multiple
wavelengths can be used to estimate tissue hemoglobin, wa-
ter concentration, scattering amplitude, and scattering
power.8 To overcome the inherent low-spatial resolution in
DOT, there is a considerable interest in developing hybrid
systems,9–27 which use the spatial mapping of one system as
the template for DOT. Image formation from the data col-
lected by these �stand-alone/hybrid� systems involves solv-
ing an inversion problem. This article describes LS minimi-
zation techniques to solve the inverse problem and to
quantitatively compare their performance in a systematic se-
ries of simulations. The inverse problem �image reconstruc-
tion procedure� in DOT is known to be a nonlinear, ill-posed,
and ill-determined problem,2 and to solve such a problem, a
regularization term must be added to constrain the solution

space in order to obtain a meaningful image. There are many
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regularization methods available in the literature and this
work focuses on the fact that most LS techniques presented
in the literature can be encompassed within a generalized
theoretical framework, which includes a regularization ma-
trix that is based upon weights from the data and parameter
variances. Note that Appendix A gives the terminology used
in this work along with definitions of symbols.

Because of the interest in using spatial information de-
rived from conventional imaging modalities in the DOT in-
verse problem, a number of methods have been presented in
the literature.9–27 These techniques were initially proposed by
Barbour et al.9 and Schweiger et al.13 and used in to improve
the quantitative outcome of reconstructed images. Ntziach-
ristos et al.14 used the magnetic resonance �MR� information
to divide the imaging domain into tumor and nontumor re-
gions to make the problem better posed. Li et al.17 used an
x-ray tomosynthesis volume to segment the breast into dif-
ferent subregions and used different regularization param-
eters depending on the size of the subregions. Recently Gu-
ven et al.24 proposed a Bayesian frame work to include
spatial prior information in an effective way which will not
bias the image reconstruction problem to imperfect anatomi-
cal priors. Pogue and Paulsen,10 Brooksby et al.18,21,25 and
Yalavarthy et al.26 have extended these approaches for the
use of anatomical prior information in which, depending on
the connectivity and size of the subregion, the regularization
term was scaled. Even though the effect of imperfect spatial
prior information on the image reconstruction is a very active
research area,23,24,26 it was assumed here that the spatial pri-
ors were perfect. Other ongoing studies are examining this
more complex issue.

II. DOT FORWARD PROBLEM

DOT involves solving a model �forward� and estimation
�inverse� problem, sequentially as illustrated in Fig. 1. In this
section, the forward problem is described, which involves
generating the measurement data, for a given set of optical
property estimates within the tissue, using a finite element

FIG. 1. An illustration of the forward and inverse problem in diffuse optical
tomography is shown �see Ref. 64�, where �a� the data y is estimated given
values of �a and �s� and source/detector positions. In the inverse problem
�b�, the values of �a and �s� must be obtained given a set of measurements
�y�.
solution to the diffuse transport equation.
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Light propagation in a turbid elastic-scattering media, like
tissue, is treated as “neutral-particle transport” rather than
“wave propagation” and in the frequency domain, the diffu-
sion equation is used, which is given by2,28

− � . D�r� � ��r,�� + ��a�r� + i�/c���r,�� = Qo�r,�� ,

�1�

where ��r ,�� is the photon density at position r and the
light modulation frequency is given by � ��=2�f , in this
work f =100 MHz�. The isotropic source term is represented
by Qo�r ,�� and the speed of light in tissue by c, which is
constant here. �a�r� is the optical absorption coefficient and
D�r� is the optical diffusion coefficient, which is defined as

D�r� =
1

3��a�r� + �s��r��
, �2�

where �s��r� is the reduced scattering coefficient, which is
defined as �s�=�s�1−g�. �s is the scattering coefficient and g
is the anisotropy factor. A Robin �type-III� boundary condi-
tion is applied to model the refractive-index mismatch at the
boundary.29 The measured data for a frequency domain sys-
tem are the amplitude and phase of the transmitted signal. If
F is the forward model �finite element method �FEM� in
here� which gives the fluence at every point, then the
modeled data G��� can be obtained by sampling the
forward model at the boundary given internal spatial distri-
butions of optical properties and source-detector locations,
where � represents the parameters ��= �D�r� ;�a�r���,

G��� = S�F���� . �3�

The details of the FEM formulation of the forward model
are given in Refs. 30–32. The results presented are restricted
to frequency-domain data, more specifically data �y� is the
natural logarithm of the amplitude �A� and phase ��� of
the frequency-domain signal. Defining A and � in terms
of modeled data, A=�Re�G����2+Im�G����2 and �
=tan−1�Im�G���� /Re�G�����. The Jacobian �J�, which gives
the rate of change of modeled data with respect to param-
eters, is calculated using the adjoint method.30 Even though
the actual parameters being estimated are D�r� and �a�r�, the
results are presented in terms of �a�r� and �s��r�, which are
spectroscopically more meaningful.

III. LEAST-SQUARES MINIMIZATION TECHNIQUES

This section outlines several different minimization
schemes used in this work. These techniques are used to
solve the inverse problem �Fig. 1�b��, which is achieved by
minimizing the objective function ��� over the range of �.
Minimizing the objective function can be achieved by sev-
eral different approaches. The most common approaches in-
volve obtaining repeated solutions of the forward model and
recomputation of the Jacobian �J� �and its inversion� at every
iteration because of the nonlinear nature of the problem.
There are also gradient-based optimization schemes avail-
able in the literature33,34 to minimize the objective function

which does not require an explicit inversion of the Hessian
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matrix. In this work direct methods, known as full-Newton
approaches,2 are employed in minimization for all the regu-
larization techniques used for a fair comparison. LS minimi-
zation has the effect of reducing high frequency noise, lead-
ing to smooth images of optical properties. Total variation
methods and variants of this are used to obtain edge preser-
vation in reconstructed images.27,35 Solving the inverse prob-
lem using LS minimization can also be seen from a Bayesian
prospective to obtain maximum a posteriori estimate.24,36,37

A correlation between the Bayesian frame work and LS
minimization techniques is given in Refs. 12, 38, and 39, but
usage of the Bayesian frame work requires one to choose a
particular noise model for both data and image space, which
might not reflect the actual noise characteristics unless some
prior information is available. Here, the emphasis is on LS
minimization techniques with a focus on what the value of
the regularization method can be. The LS methods are di-
vided into two groups: �1� Without spatial priors and �2� with
spatial priors.

A. Without spatial priors

1. Levenberg–Marquardt minimization

This approach is also known as a trust-region method5,39

where experimental data is matched with modeled data
iteratively.40,41 The objective function for the DOT problem
is defined as

� = ��y − G����2� , �4�

where y is the data and G��� is the modeled data. This equa-
tion is minimized by setting the first-order derivative equal to
zero.

a. First-order condition. Minimizing � with respect to
�, which is achieved by setting �� /��=0,

��

��
= JT� = 0, �5�

where � is the data-model misfit, �=y−G���, J is the Jaco-
bian, and T represents the matrix transpose operator.

b. Iterative update equation. Imagine a sequence of ap-
proximations to � represented by �i, then using Taylor series
on G��i� and expanding around �i−1 gives

G��i� = G��i−1� + J��i + . . . , �6�

where ��i=�i−�i−1. Rewriting � utilizing the first two
terms of Eq. �6� �ignoring the rest, equivalently linearizing
the problem� gives

�i = y − G��i� = y − G��i−1� − J��i = �i−1 − J��i. �7�

Rewriting Eq. �5� for the ith iteration

JT�i = 0. �8�

Substituting Eq. �7� into Eq. �8� gives

JT��i−1 − J��i� = 0. �9�

Further simplification leads to the update equation
T T
�J J���i = J �i−1. �10�
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When JTJ is ill-conditioned, a diagonal term is added to
stabilize the problem. In this case, the update equation be-
comes:

�JTJ + 	I���i = JT�i−1, �11�

where ��i is the update for the parameter in the ith step.
Note that 	 monotonically decreases with iterations �always

0�, and also that 	� ���2. The iterative method �or its
modified version� is the commonly used minimization tech-
nique in DOT. It can be seen from Eqs. �10� and �11�, when
	 becomes zero in Eq. �11� it becomes Eq. �10�. It is also
important to note that JTJ is always symmetric, because
�JTJ�T=JT�JT�T=JTJ. The advantage of using this method is
in the simple choice of a regularization parameter �	�. The
limitations41 of this method include:

• JTJ must be positive definite.
• The initial guess ��0� should be close to the actual so-

lution.
• The update equation �Eq. �11�� does not solve the first-

order conditions unless 	=0.
• Since parameters are not involved in the minimization

scheme, the inverse problem may be unstable.

Even though JTJ is not positive definite in DOT, the
Levenberg–Marquardt �LM� approach �or its modified ver-
sion� has been used successfully in a number of
instances.2,6,7,28,42

2. Tikhonov minimization

The generalized objective function43,44 in the Tikhonov
case includes parameters in the minimization function, which
is defined as

� = ��y − G����2 + ��L�� − �0��2� , �12�

where � is the Tikhonov regularization parameter and L is a
dimensionless regularization matrix �in this work�. Here, �0

is the prior estimate of the optical properties, which in DOT
has typically been obtained from calibrating the data.45,46

a. Choice of �. Rewriting Eq. �12�, normalizing both
terms by their variances yields

� = 	�y − G����2

�y�2 +
�L�� − �0��2

��−�0
�2 
 , �13�

where y is the standard deviation in the data y and �−�0
is

the standard deviation in the optical properties �or deviation
from the prior estimate of optical properties�. Note that the
variance of data-model misfit ��=y−G���� is assumed from
the data, i.e., ���2= �y�2+ �G����2 with �G����2=0 because
synthetic data was used. Multiplying Eq. �13� by y

2 and
comparing the result with Eq. �12� leads to

� =
�y�2

��−�0
�2 , �14�

which shows that the Tikhonov regularization parameter ���
should be equal to the square of the ratio of the standard

deviation in data to the standard deviation of the parameters.
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This is a subtle yet important point, especially since this
parameter is rarely defined this way, and is most commonly
derived empirically.

b. First-order condition. Minimizing � with respect to
�, which is achieved by setting �� /��=0,

��

��
= JT� − �LTL�� − �0� = 0. �15�

c. Update equation. Rewriting Eq. �15� for the ith itera-
tion leads to

JT�i − �LTL��i − �0� = 0. �16�

Substituting Eq. �7� into Eq. �16� results in

JT��i−1 − J��i� − �LTL��i−1 + ��i − �0� = 0. �17�

Further simplification leads to the iterative update equa-
tion

�JTJ + �LTL���i = JT�i−1 − �LTL��i−1 − �0� . �18�

Note that LTL is symmetric. The constraint on the choice
of L is that it must be positive definite.44 In the absence of
spatial priors, a common choice for the form of L is the
identity matrix �I�, which leads to the update equation

�JTJ + �I���i = JT�i−1 − ���i−1 − �0� . �19�

Refer to Appendix B for an analysis of the Tikhonov regu-
larization in terms of singular values. This regularization
method is particularly common for ill-posed problems. The
advantage of the method, is that it includes parameters
within the minimization scheme which can be selected to
improve the stability of the solution. Its limitations are that:

• it requires a prior opinion about the noise characteristics
of the parameter and data spaces �for �� and

• it does not take into account the individual variances of
the data points/parameters, nor their covariances.

However, the simplicity of the approach makes it attrac-
tive for use in ill-posed problems. When the dynamic range
of the data is large �as in DOT�, incorporation of the maxi-
mum variance in the data will cause the minimization to bias
the solution to specific data points �e.g. near the boundaries
at source-detector locations in DOT�. To reduce the effect of
bias, one can employ a generalized least squares �GLS� mini-
mization scheme, described in the next section.

3. GLS minimization

Generalized least squares minimization schemes have
been proposed in the context of Tikhonov minimization in
the literature,1,5,38 in which there is some ambiguity in choos-
ing the regularization parameter ���. In here, a direct inclu-
sion of weight matrices �which are inverses of covariance
matrices� in the minimization scheme was employed to ex-
plicitly remove the dependence of reconstructed image qual-
ity on the choice of regularization parameter. This type of

47,48
choice leads to an objective function
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� = ��y − G����TW��y − G����

+ �� − �0�TW�−�0
�� − �0�� , �20�

where W� is the weight matrix for data-model misfit ��� with
W�= �cov����−1 �Appendix A-4 of Ref. 47�. W�−�0

is the
weight matrix for optical properties ��−�0� with W�−�0
= �cov��−�0��−1 �Appendix A-4 of Ref. 47�. Explicit forms
for these weight matrices are discussed later. Since both are
inverses of covariance matrices, they are symmetric and
positive definite.

a. First-order condition. Minimizing � with respect to
�, which is achieved by setting �� /��=0 produces

��

��
= JTW�� − W�−�0

�� − �0� = 0. �21�

b. Update equation. Similar to the Tikhonov approach,
linearizing the problem leads to the iterative update
equation48

�JTW�J + W�−�0
���i = JTW��i−1 − W�−�0

��i−1 − �0� .

�22�

4. Choice of W�

Since simulated data were used here, in the formation of
the weight matrix �covariance matrix�, it was assumed that
the cov��� is due to measurement error only, which yields47

W� = �cov����−1 = �cov�y − G�����−1 = �cov�y��−1, �23�

where cov represents the covariance operator. In the simula-
tion, typically one generates the forward data and adds noise
to it to form synthetic data

y = G��� + y� , �24�

where � is a random number vector. Typically, a random
number generator which follows a normal distribution with
zero mean and unity variance is used. Here, y is the stan-
dard deviation of the data, assuming the noise is totally un-
correlated �white noise� in which case, the covariance matrix
becomes47

�cov�y��ij = 	0 if i � j

�y�i
2 if i = j .


 �25�

Since synthetic data were used in this article, the weight
matrix for the data �W�� becomes diagonal. In the experi-
mental case, one needs to collect an ensemble of data sets
from which a covariance matrix can be computed. In this
case, “N” data sets need to be collected using the same phan-
tom �different homogeneous phantoms need to be used for
different signal levels�, where N needs to be a large number.
From this ensemble of �y�,

�y� = ȳ + �ỹ� , �26�

where ȳ is the true or mean value of data and �ỹ� is pertur-

bation due to noise. This leads to
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�cov�y�� = �cov�ỹ�� = �ỹ��ỹ�T =
�i=1

N ỹiỹi
T

N
�27�

substituting Eq. �27� in Eq. �23� gives W�. Note that in Eq.
�23�, it was assumed the cov��� is due to measurement error,
which is also true in the case of experimental data, as the
data are calibrated to remove the offset and match the mod-
eled data.45,46

5. Choices of W�−�0

Here, two forms were considered to highlight the versa-
tility of the procedure, even though many other forms of the
covariance matrix can exist.

a. Analytical covariance form. Borrowed from the me-
teorological studies, assuming the parameter field obeys the
Helmholtz equation, an analytical form �for one-dimensional
infinite domain case� for the covariance matrix is47

�cov�� − �0��ij = ��−�0
�2�1 +

rij

l
e−rij/l, �28�

where rij is the separation distance between locations and l is
the correlation length scale. ��−�0

�2 is the expected variance
for �−�0. In this case, the weight matrix is constructed from
W�−�0

= �cov��−�0��−1

b. Local Laplacian form. Here, the weight matrix is
formed directly using a local Laplacian operator5,49,50 be-
tween neighboring locations, where

W�−�0
= �1/��−�0

�2�MTM ,

where M is the local Laplacian matrix, which is defined as

Mij = �
0 if i and j are not neighbors

− 1 if i and j are neighbors

��
j

Mij� if i = j � , �29�

where i and j represent the node numbers of the FEM mesh,
which in turn become the indices of the local Laplacian ma-
trix �M�. The diagonal terms in M gives the total number of
immediately connected nodes.

Computation of W�−�0
requires an estimate of variance of

parameters ���−�0
�2�, as is the case for calculation of the

Tikhonov regularization parameter �Eq. �14��. The expected
variance can be computed in many ways: the most common
method for imaging problems is estimation from the litera-
ture. For example, the optical contrast between tumor and
normal breast tissue is around 50%–400% �Refs. 51 and 52�,
which gives the expected standard deviation ��−�0

� in the
optical properties, and can be used to compute variance. The
calibration of the experimental data is capable of giving a
very good estimate of normal tissue optical properties.45,46

Note that weight matrix containing the expected variance
will not impose a hard constrain on the expected optical
properties, but discourages update values ���� which are
above these expected deviation in a given iteration.
The advantages of the GLS approach are that:
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• It accounts for covariance among the parameters and
data points.

• It also allows the individual data points/parameters to
have different noise characteristics �variances�.

• It constrains the problem through the weight matrices,
to produce stable solutions.

The limitations of the procedure are:

• It requires prior knowledge about the noise characteris-
tics of parameter and data spaces.

• The weight matrices may necessitate computation of the
inverse of covariance matrices �increasing run time and
memory requirements�.

• It can generate unstable solutions when unreasonable
constraints are inadvertently applied.

B. With spatial priors

Overall, the LS minimization schemes using spatial priors
can be broadly classified into two approaches: �1� soft-priors
and �2� hard-priors. The following two subsections will dis-
cuss these two approaches.

1. Soft-priors

In this approach, the regularization matrix L in the
Tikhonov approach �Eq. �18�� encodes the spatial
information.21,26 Previous results have shown that using the
spatial priors in this fashion do not bias the image estimate
when the prior information is imperfect.26 Typically, the con-
ventional image is segmented into different regions depend-
ing on tissue type to generate the spatial constraints. The L
matrix relates each nodal optical property in the numerical
model to the other nodes in that region.26 Two possible forms
are indicated later.

a. Laplacian form21

Lij = �0 if i and j are not in the same region

− 1/N if i and j are in the same region

1 if i = j
� ,

�30�

where N is the number of sampling points �e.g., nodes in a
FEM mesh� in that region.

b. Helmholtz form26

Lij = �0 if i and j are not in the same region

− 1/�N + ��h�2� if i and j are in the same region

1 if i = j
� ,

�31�

where N is the number of nodes in that region, �=1/ l with l
being the covariance length and h is the distance between the
nodes.

2. Hard-priors

In the hard-prior approach, also known as a parameter-

reduction technique, the number of parameters to be esti-
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mated becomes the number of regions segmented from the
other imaging modality �spatial priors�.26,53 Even though the
number of parameters to be estimated reduces considerably
�relative to soft-priors�, the problem can still be ill-posed,2 so
a LM approach was used �Eq. �11�� in this case due to its
simplicity. The main advantages of the method are:

• The problem is overdetermined, which also implies JTJ
is positive definite.

• It is computationally efficient.

The limitations include:

• The effect of error or uncertainty in the spatial priors
can be amplified by the technique.

• The DOT problem may still be ill-posed �and ill-
conditioned� after the constraints are added.2

3. Important notes about minimization schemes

There are additional important points about these minimi-
zation schemes.

• The weight matrices �W� and W�−�0
� in the GLS

scheme are computed before the iterative reconstruction
procedure begins and are invariant during the iterative
process. The same is true of the soft-priors L-matrix
calculations.

• The first-order conditions �Eqs. �5�, �15�, and �21�� de-
rived by minimizing the objective functions �Eqs. �4�,
�12�, and �20�� in all minimization schemes appear on
the right-hand side �rhs� of the update equations �Eqs.
�11�, �18�, and �22�� which means that only when the
rhs, has reached zero, the solution reached the global
minimum.

• Computation of weight matrices, L matrices and the
Tikhonov regularization parameter, requires a prior
opinion about the variances of the parameters and data.
Here, only the best prior estimates are used, which
means that the actual variances of the parameter and
data spaces are used in the reconstruction procedure.
Variation from the best prior values can be examined
also, to observe the effect of priors, but that work is
beyond the scope of the present article.

• When spatial priors are used in this study �as well as in

FIG. 2. The chosen optical property distribution/domain for the generation
of synthetic data is shown. The diameter of the domain was 86 mm.
most studies�, it is assumed that they are perfect. The
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effect of spatial prior uncertainty on the DOT inverse
problem is discussed in Refs. 23, 24, and 26 and is the
subject of ongoing study.

• The covariance lengths associated in the weight matrix
�GLS-analytical covariance �AC� form, Eq. �28��, and
the L matrix �Helmholtz form, Eq. �31�� calculations are
chosen to be 10 and 5 mm, respectively. The effect of
covariance length on the image reconstruction is dis-
cussed in Ref. 26.

• In the LM approach �Eq. �11��, the Jacobian is normal-
ized by its optical properties. Also 	 was chosen ini-
tially to be 1 and it was reduced by a factor of 100.25 at
every iteration and multiplied by the maximum of the
diagonal values of JTJ. The normalization procedure is
described in Ref. 54. Moreover, eight iterations were
chosen for all the LM reconstructions, as it has been
shown in the literature that after this iteration, error in
the optical properties increases for this particular prob-
lem and algorithm.55,56 This inherent instability can be
attributed to the fact that JTJ is not positive definite in
DOT.

• For simplicity, all the reconstruction algorithms are
tested only in the two-dimensional case. Comparison of
three-dimensional reconstructions are left for future
investigations.

4. Special cases of GLS minimization
The update equation for the GLS scheme, Eq. �22�, turns

FIG. 3. Reconstruction results �top of the first row, abbreviations are given
in Appendix A� are shown using noiseless data �bias calculations� �a� with-
out spatial priors and �b� with spatial priors. The top row contains images of
�a and bottom row shows �s� images.
into the Tikhonov case �Eq. �18�� when W�= I and W�−�0
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=�LTL. Moreover, if one assumes that ��=�−�0, which is
equivalent to taking a single step in the iterative procedure,
then Eq. �19� maps into Eq. �11� with 	=2�. Hence, the LM
technique can be viewed as a special case of the Tikhonov

TABLE I. Mean and standard deviation of the recons
regions �labeled in first column of Fig. 3�a�� recovere
in Figs. 3–5.

Method
Noise
level Region-0

Actual — 0.01
LM 0% 0.0101±0.0

5% 0.0102±0.00
10% 0.0103±0.00

Tikhonov 0% 0.0102±0.00
5% 0.0102±0.00
10% 0.0102±0.00

GLS-AC 0% 0.01±0.00
5% 0.0101±0.00
10% 0.0101±0.00

GLS-LL 0% 0.01±0.00
5% 0.0101±0.00
10% 0.0101±0.00

Laplacian 0% 0.0098±0.00
5% 0.0098±0.00
10% 0.0095±0.00

Helmholtz 0% 0.0099±0.00
5% 0.0099±0.00
10% 0.0098±0.00

Hard-Priors 0% 0.0099
5% 0.0098

10% 0.0098
Tab

Method Noise
level

Region-0

Actual — 1.0
LM 0% 1.0356±0.23

5% 1.075±0.03
10% 1.2672±0.90

Tikhonov 0% 1.0096±0.03
5% 1.0111±0.00
10% 1.0107±0.02

GLS-AC 0% 1.0034±0.06
5% 1.0008±0.09
10% 0.9987±0.08

GLS-LL 0% 1.0022±0.06
5% 0.9998±0.10

10% 0.9981±0.09
Laplacian 0% 0.9918±0.01

5% 0.9895±0.02
10% 1.0103±0.01

Helmholtz 0% 0.9878±0.01
5% 0.9813±0.01
10% 0.9884±0.01

Hard-Priors 0% 0.9919
5% 0.9874

10% 0.9854
Tab
method, which itself is a special case of the GLS approach. It
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is important, however, to differentiate LM from the single-
step Tikhonov approach because LM requires 	 to reach zero
asymptotically with number of iterations, whereas in the
Tikhonov scheme, � is constant. Moreover, LM does not

d: �a� �a and �b� �s� values �in mm−1� for different
h data having 0%, 5%, 10% noise for images shown

Region-1 Region-2

0.02 0.01
0.0172±0.0023 0.0105±0.0005
0.0125±0.0016 0.0123±0.0011
0.0132±0.0026 0.0118±0.0023
0.0117±0.0003 0.0117±0.0002
0.0114±0.0002 0.0112±0.0001
0.0108±0.0009 0.0107±0.0005
0.015±0.0011 0.0112±0.0003
0.0146±0.0012 0.0106±0.0004
0.0136±0.0009 0.0112±0.0008
0.0152±0.0012 0.0113±0.0003
0.0149±0.0015 0.0108±0.0006
0.0138±0.0009 0.0112±0.001
0.0212±0.0001 0.0112±0.0001
0.0247±0.0001 0.0097±0.0001
0.0276±0.0002 0.0157±0.0128
0.019±0.0002 0.0111±0.0001

0.0193±0.0002 0.0099±0.0001
0.0174±0.0002 0.0136±0.0001

0.0218 0.0116
0.0218 0.0131
0.018 0.0166

a�
Region-1 Region-2

1.0 3.0
0.9995±0.0359 2.3758±0.5160
1.0555±0.3254 1.8215±0.3144
1.3111±0.4128 1.7111±0.6112
1.1153±0.0260 1.1644±0.0251
1.0912±0.0189 1.0934±0.0104
1.0441±0.0062 1.0416±0.0035
1.0335±0.0199 1.6838±0.1961
1.0670±0.0362 1.6972±0.2037
1.0761±0.0343 1.3703±0.0773

1.03±0.0183 1.7801±0.2573
1.0567±0.0329 1.8502±0.3034
1.0839±0.0425 1.4271±0.0990
0.9429±0.0015 2.8207±0.0491
0.8559±0.0036 3.6931±0.1551
0.7447±0.0011 1.9884±0.0096
1.0518±0.0018 2.7833±0.0854
1.1204±0.0081 3.4252±0.1947

1.2766±0.01 2.1761±0.0382
0.9266 2.7332
1.0358 2.345
1.3899 1.822

b�
tructe
d wit

01
16
29
05
04
03

1
14
13

1
16
16
01
02
01
01
02
02

le 1�

64
57
86
97
04
16
88
16
31
93
35
47
55
02
24
54
99
21

le 1�
involve parameters in the objective function.
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5. Stopping criterion

The importance of the stopping criterion in an iterative
procedure cannot be ignored. The stopping criterion used in
this work is based on the first-order conditions and data-
model misfit, which in the limit ensures that the problem has
reached the global minima. The iterative procedure is
stopped when the L2 norm of the data-model misfit ��� does
not improve by more than 10−10% or the L2 norm of the first
order conditions is less than 10−17%. Beyond these values,
the round-off error dominates. This stopping criterion is
more robust because it involves first-order conditions as
well.

IV. TEST PROBLEM

This section provides the details of the test problem con-
sidered here. The optical property distributions used for the
synthetic data �y, noise added� generation are shown in Fig.
2. The diameter of the domain was 86 mm. The background
optical properties were �a=0.01 mm−1 and �s�=1.0 mm−1.
There were two irregular shaped targets, one in �a with a
contrast of 2:1 to background and one in �s� with a contrast
of 3:1 relative to the background. A mesh consisting of 4617
nodes �corresponding to 9040 linear triangular elements� was
used for the generation of data. Sixteen light collection/
delivery fibers were arranged equally spaced on the boundary

FIG. 4. Reconstruction results �top of the first row, abbreviations are given
in Appendix A� are shown using 5% noisy data �a� without spatial priors and
�b� with spatial priors. The top row gives images of �a and bottom row
shows �s� images.
of the circle, where one fiber was used as the source while all
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other fibers served as detectors in turn which produced a total
of 240 measurements �that is 240 ln�A� data points and 240 �
data points�. The source was modeled as a Gaussian profile
with a full width at half maximum of 3 mm to represent the
light applied57 and was placed at a depth of one transport
scattering distance from the tissue boundary.58 Noise levels
of 1%, 3%, 5%, and 10% were added to the modeled data
��ln�A� ;��� to form the experimental data �y�. At the same
time, the variances in the data were also computed to be used
in the reconstruction algorithms.

The actual reconstructions and forward modeled data
computation were performed on different FEM meshes.59

This mesh has the same diameter �86 mm� with 1785 FEM
nodes, which corresponded to 3418 linear triangular
elements.58 The expected distribution of optical properties is
given in Fig. 3�a� �first column�. Background optical proper-
ties were used as initial estimates ��0� in the evaluation of
reconstruction methods. The number of parameters to be es-
timated was 3570 �1785 in �a and 1785 in �s��. The number
of data points available for reconstruction was 480 �240 of
ln�A� and 240 of ��. The dimension of J was 480�3570, W�

was 480�480, and W�−�0
was 3570�3570. Optical prop-

erty distributions were reconstructed from the data without
noise �bias calculations� as well as with noise levels of 1%,
3%, 5%, and 10%. The reconstructions are repeated for the
case of 3% noise in the data with increasing complexity �tar-

FIG. 5. Reconstruction results �top of the first row, abbreviations are given
in Appendix A� are shown using 10% noisy data �a� without spatial priors
and �b� with spatial priors. The top row gives images of �a and bottom row
shows �s� images.
gets� in the optical property distributions.
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V. RESULTS AND DISCUSSION

Initially all reconstruction techniques were executed on a
data set without noise to estimate the bias. Note that for these
calculations the variance was found between the data gener-
ated using meshes �described in Sec. IV� with 4617 nodes
and 1785 nodes. The results without employing spatial prior
information from the reconstruction techniques are given in
Fig. 3�a�. The first column shows the expected distribution
for the 1785 node mesh used in the reconstruction and for-
ward model calculations. The Tikhonov approach failed to
recover the contrast. This was primarily due to the choice of
�, which was based on the maximum variance value, which
biases the problem to data points that are above the average
noise level. Since DOT is known to have a large dynamic
range in the data �at least eight orders of magnitude57�, this
choice of � deemphasize the data points that have low or
intermediate variance values. The root-mean-square �rms� er-
rors between the expected and reconstructed optical proper-
ties are plotted in Fig. 6. The mean and standard deviation in
the reconstructed images for different regions �labeled in first
column of Fig. 3�a�� using the reconstruction techniques dis-
cussed until now are given in Table I. In the case of no
spatial priors, LM gives less bias in �a, where as GLS per-
forms better in �s�. The bias calculations were repeated with
spatial-priors and the reconstruction results are presented in
Fig. 3�b�. These rms errors in the optical properties are also
plotted in Fig. 6. Surprisingly the soft-prior approach �La-
placian and Helmholtz� performed better than the hard-prior
strategy. It can also be observed from Fig. 6 and Table I that
the usage of spatial priors reduces the bias by at least a factor
of 2.

Figure 4�a� shows reconstruction results using data with
5% noise in amplitude without employing spatial priors.
Once again the Tikhonov approach fails to recover the con-
trast. The LM results are dominated by boundary artifacts.
Figure 4�b� presents the results from the same data set when

FIG. 6. A plot of the rms error in the estimated optical properties is shown as
a function of increasing noise level for all reconstruction techniques.
spatial priors were employed. Figures 5�a� and 5�b� show
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similar kinds of effort for the case of data with 10% noise.
Note that, for the same choice of the regularization parameter
���, Tikhonov minimization scheme with spatial priors
yielded quantitatively more accurate results compared to
without spatial priors case, indicating that the reconstructed
image accuracy along with the quality largely depends on the
prior information. The rms error in the reconstructed �a and
�s� images are plotted in Fig. 6 as a function of increasing
noise level. The rms error using the LM approach increases
with increasing noise. GLS techniques perform very well
even in the case of 10% noise �Figs. 5�a� and 6�. Among the
GLS methods, usage of an analytical covariance form gives
better results ��13% less rms error� in �a and the local
Laplacian form performs slightly better ��3% less rms er-
ror� in �s�. In the case of employment of spatial-priors, it can
clearly be seen �from Figs. 4�b�, 5�b�, and 6 and Table I� that
hard-priors perform better in �s� reconstruction when the
noise level is below 10%. Among the soft-prior results, for
�a, the rms error linearly increases with increasing noise
level in the Laplacian case �Fig. 6�. In �s� reconstructions, the
performance of Laplacian and Helmholtz are comparable,
clearly Helmholtz performs slightly better ��5% � when the
noise level is above 3%. Interestingly, the Helmholtz regu-
larization emerges with the lowest rms error in �a recon-
struction. This is primarily because of the covariance length
factor in the Helmholtz form of the regularization matrix
�Eq. �31��, which ensures that the optical properties covary
within that correlation length �in here it is 5 mm�. The same
explanation is true for the GLS-analytical covariance form
�Eq. �28��, which performs better in �a estimation. It is also
important to note that in the case of a limited number of
wavelengths, Srinivasan et al.60 have shown that 5% error in
the optical property estimate ��a and �s�� can lead to ap-
proximately 45% error in spectral properties �hemoglobin,
water concentrations, oxygen saturation, and scattering esti-
mates� of tissue. Any small improvement in the optical prop-
erty estimates would be important for improvement in the
utility of this type of imaging under practical conditions.

To emphasize the effects of complexity on the reconstruc-
tion procedures, a set of simulations were performed with an
increasing number of targets. Each target was chosen to be
circular with a diameter of 10 mm. The contrast to back-
ground optical properties was 2:1. The target locations and
corresponding optical properties are shown in the first col-
umn of Fig. 7�a�. The targets were also labeled from 1 to 4
�background is labeled as 0�. The data used in this case have
a noise level of 3%. A total of four different reconstructions
were performed by adding each target at a time �from 1 to 4�.
The result of the four target case is shown in Fig. 7. Corre-
sponding mean and standard deviation of the reconstructed
optical properties for different regions �labeled in first col-
umn of Fig. 7�a�� are given in Table II. Figure 8 contains a
plot of rms error in the reconstructed optical properties with
increasing number of targets. The rms error increases with
increasing number of targets for every reconstruction algo-
rithm. Note that targets 3 and 4 were placed close to the

center of the domain, where the sensitivity is low compared
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to the periphery.58 Moreover, increasing the �a targets �from
1 to 2, target numbers 1 and 3�, caused the rms error to
increase by at least 30%. The same is true with the �s� tar-
gets. In the case of multiple targets, the Helmholtz type of
regularization matrix resulted in the least error in both �a

and �s�. Even though the hard-prior case performs very well
in terms of lowest rms error for a single target, as the com-
plexity �or number of parameters to be estimated� of the
problem increases, it clearly performs poorer than most of
the techniques presented �Fig. 8�.

Even though the choice of the Tikhonov regularization
parameter ��� given by Eq. �14� is the optimal, the other
common way is to use L-curve analysis.61 The L curve for
DOT is shallow,62 similar to the estimation problem in elec-
trical impedance tomography, which poses a problem in se-
lection of �, and is shown to be unreliable in Ref. 59.

Table III gives the computational time per iteration for
each of the reconstruction technique �in these two-

dimensional cases� on Pentium IV �dual core� 2.8 GHz, 2GB

Medical Physics, Vol. 34, No. 6, June 2007
RAM Linux work station. GLS schemes take little more
computation time than the Tikhonov minimization, as ex-
pected hard priors took the least computation time.

Overall, the inclusion of spatial priors has an important
positive effect. The errors in the estimated optical properties
are also reduced by at least a factor of 2 with spatial infor-
mation. The reconstructed images also contain the fine fea-
tures extracted from conventional imaging modalities.
Through the incorporation of the individual variability of the
data points and optical parameters �GLS scheme�, recon-
struction performs better even when the noise level in the
data is high. It is also important to note that, as mentioned
before, iteration number 8 �which is the best result in terms
of lowest rms error� is chosen for rms error calculations in
LM approach, after this iteration, the solution becomes un-
stable. Whereas the rest of the approaches yield stable solu-
tions �error in optical properties did not increase with in-
creasing iterations�. When the individual data point variances

FIG. 7. Reconstruction results �top of
the first row, abbreviations are given in
Appendix A� are shown using 3%
noisy data �a� without spatial priors
and �b� with spatial priors for four tar-
gets in the tissue as shown. The top
row gives images of �a and bottom
row shows �s� images. The actual �a

and �s� with target numbers are given
in the first column of �a�.
were not considered �Tikhonov approach�, the reconstruction
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algorithm may not have the ability to recover the contrast in
the target. Moreover, simultaneous estimation of both ab-
sorption and scattering coefficients causes crosstalk between
the two parameter estimates. Even with error-free spatial pri-
ors, as the complexity of the estimation problem �or number
of targets� increased for a given noise level in the data, the
parameter-reduction �hard-priors� technique failed to give the
best estimates of the optical properties due to its LM imple-
mentation.

TABLE II. Mean and standard deviation of the recons
regions �labeled in first column of Fig. 7�a�� recovere

Method Region-0 Region-1

Actual 0.01 0.02
LM 0.0101±0.0004 0.0113±0.0001

Tikhonov 0.0102±0.0004 0.011±0.0001
GLS-AC 0.0102±0.0009 0.0129±0.0003
GLS-LL 0.0102±0.0011 0.0133±0.0004

Laplacian 0.01±0.0002 0.0181±0.0001
Helmholtz 0.01±0.0002 0.0169±0.0001
Hard-Priors 0.01 0.0158

Method Region-0 Region-1

Actual 1.0 1.0
LM 1.0063±0.0986 1.1333±0.0027

Tikhonov 1.0051±0.0217 1.0341±0.0019
GLS-AC 0.9993±0.0489 0.9885±0.0139
GLS-LL 0.9987±0.0553 0.9764±0.0127

Laplacian 0.9886±0.0163 1.0891±0.0023
Helmholtz 0.9899±0.0164 1.1499±0.0037
Hard-Priors 0.9856 1.3712
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VI. CONCLUSIONS

The diffuse optical tomography inverse problem is often
solved by Levenberg–Marquardt/modified Tikhonov minimi-
zation. A generalized approach for diffuse optical tomogra-
phic imaging which incorporates the expected variability of
the data noise and magnitude of the optical parameter varia-
tion is presented as a structured weight-matrix regularization.
It is also shown that Tikhonov minimization and the

ed: �a� �a and �b� �s� values �in mm−1� for different
th data having 3% noise for images shown in Fig. 7.

Region-2 Region-3 Region-4

0.01 0.02 0.01
112±0.0002 0.0111±0.0003 0.011±0.0002
112±0.0001 0.0109±0.0001 0.011±0.0001
111±0.0003 0.0114±0.0003 0.0113±0.0003
115±0.0004 0.0113±0.0003 0.0113±0.0002
105±0.0001 0.0152±0.0001 0.0158±0.0001
115±0.0001 0.0149±0.0001 0.0158±0.0001

0.0126 0.014 0.0158

Region-2 Region-3 Region-4

2.0 1.0 2.0
24±0.0623 1.1191±0.0396 1.097±0.0366
575±0.0073 1.0321±0.0056 1.0329±0.0043
486±0.0447 1.021±0.0234 1.1184±0.0076
726±0.0596 1.0271±0.0262 1.1422±0.0105
799±0.0242 1.3445±0.0043 1.4044±0.0036
122±0.0386 1.3382±0.0079 1.3521±0.0066

1.7319 1.4471 1.5255

FIG. 8. Plot of the rms error in the es-
timated optical properties is shown for
increasing number of targets with 3%
noise in the data for all reconstruction
techniques �legend of the figure�. Ab-
breviations used for the techniques are
given in Appendix A. The targets used
are numbered in the images presented
in Fig. 7�a�.
truct
d wi
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Levenberg–Marquardt approach are special cases of this
GLS minimization formalism. Weight matrices that are used
in this reconstruction procedure, consisting of the variance
and covariance among the data points and optical properties,
penalize the solution to match the modeled data with the
experimental data more appropriately. This framework can
also be used to incorporate structural information, given by
MR, computed tomography, or other imaging modalities
when the two are acquired on the same tissue volume. Using
a test problem, all of these techniques are studied in terms of
the data noise level and test field complexity and a uniform
comparison was made using the same implementation
scheme for each minimization method. Even with highly
noisy data, the GLS approach gives meaningful reconstruc-
tion results. It appears that the standard Levenberg–
Marquardt approach may be unstable for the DOT problem.
It is also shown that consideration of the individual variances
of data points is the key for an estimation procedure to re-
cover high optical contrast. Employing spatial information
reduced the errors in the reconstruction results by at least a
factor of 2. Parameter reduction using spatial priors can pro-
duce erroneous results when the noise level is high. The
same is true for increasing numbers of targets. Future work
includes investigating various approaches for incorporating
spatial priors into the GLS scheme with experimental data
sets. Moreover, a thorough examination of these techniques
in three-dimensional case will be taken up as a future inves-
tigation. The computer algorithms and test data used in this
article �along with some additional material� are given at this
web page.63
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APPENDIX A: TERMINOLOGY

DOT—diffuse optical tomography.

TABLE III. Comparison of computation time per iteration for different recon-
struction techniques on Pentium IV �dual core� 2.8 GHz, 2 GB RAM Linux
work station. the abbreviations used for the reconstruction techniques are
given in Appendix A.

Reconstruction method Computation time per iteration

LM 17.92 Sec
Tikhonov 21.28 Sec
GLS-AC 23.39 Sec
GLS-LL 23.39 Sec
Laplacian 22.78 Sec
Helmholtz 22.78 Sec
Hard-Priors 10.73 Sec
�a(r)—optical absorption coefficient of tissue.
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�s�(r)—reduced �or transport� scattering coefficient of tis-
sue.

D(r)—optical diffusion coefficient of tissue=1/3��a�r�
+�s��r��.

�—parameters �generalized� to estimate= �D�r� ;�a�r��.
�0—prior value of the parameters �initial guess, generally

obtained from prior calibration of data45,46�.
F(�)—forward model.
G(�)—Modeled data �G—sampled forward model

=S�F��.
A—amplitude of the signal.
�—phase of the signal.
y—Measured data= �ln�A� ;��.
‖X‖—L2 norm of vector X=��i=1

N Xi
2.

�—data-model misfit=y−G���.
W�—weight matrix for �= �cov����−1 �Appendix A-4 of

Ref. 47�.
W�−�0

—weight matrix for �−�0= �cov��−�0��−1 �Ap-
pendix A-4 of Ref. 47�.

�—Tikhonov regularization parameter.
L—Tikhonov regularization matrix.
I—identity matrix.
�2—variance.
J—Jacobian of the sampled forward model=�G��� /��.
�—objective function.
Error—true value-estimated value �prediction�.
Bias—difference between the true optical property distri-

bution and estimated optical properties in the case of model
generated data �without adding the noise�.

Ill-posed—Small changes in the data can cause large
changes in the parameters.

Ill-conditioned—the condition number �ratio of largest
singular value to smallest singular value� is large, which im-
plies the inverse solution would not be unique.

Ill-determined—�or under-determined� the number of in-
dependent equations are smaller than number of unknowns.

Unstability—error gets amplified with iterations.
LM—Levenberg–Marquardt minimization �Sec. III A 1�.
Tikhonov—Tikhonov minimization scheme without

spatial-priors, L= I �Sec. III A 2�.
GLS-AC—generalized least squares minimization

scheme �Sec. III A 3� with analytical covariance form for
W�−�0

�Eq. �28��.
GLS-LL—generalized least squares minimization

scheme �Sec. III A 3� with local Laplacian form for W�−�0

�Eq. �29��.
Laplacian—Tikhonov minimization scheme in the case

of soft priors �Sec. III B 1� where L approximates Laplacian
form, defined by Eq. �30�.

Helmholtz—Tikhonov minimization scheme in the case
of soft priors �Sec. III B 1� where L approximates Helmholtz
form, defined by Eq. �31�.

Hard-priors—parameter-reduction technique based on

spatial priors �Sec. III B 2�.
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APPENDIX B: TIKHONOV REGULARIZATION-
SINGULAR VALUES

It is interesting to examine Tikhonov regularization from
the point of view of singular values. If one rewrites the up-
date equation �Eq. �19�� as

�JTJ + �I���i = JT�i−1 + C , �B1�

where C=���i−1−�0�, as it is a constant vector for a chosen
iteration i. Singular-value decomposition of J gives

J = USVT, �B2�

where U and V are orthonormal matrices containing the sin-
gular vectors of J, i.e., UTU= I and VTV= I. S is a diagonal
matrix containing the singular values �Si� of J. Substituting
this into update equation �Eq. �B1�� generates

�VSTUTUSVT + �I���i = VSTUT�i−1 + C . �B3�

Using the orthonormal properties of U and left multiply-
ing by VT on both sides of Eq. �B3� yields

�VTVSTSVT + �VT���i = VTVSTUT�i−1 + VTC . �B4�

Now using the orthonormal properties of V and rearrang-
ing the terms leads to

�STS + �I�VT��i = STUT�i−1 + VTC . �B5�

Taking the inverse, left multiplying by V and simplifying
the result gives

��i = V�STS + �I�−1�STUT�i−1 + VTC� . �B6�

Writing Eq. �B7� in the form

��i = VDP , �B7�

where P= �STUT�i−1+VTC�, a column vector, and D is a di-
agonal matrix which has the form

Dij = �0 if i � j

1

Si
2 + �

if i = j . � �B8�

Similar expressions hold for L� I �Ref. 65� in Eq. �18�.
Considering the case �=0, one can clearly see that for an
ill-conditioned matrix J, implying some of the singular val-
ues are almost zero �Si�0�, the inversion becomes unstable
�some of the diagonal values of D become infinite�. By using
Tikhonov regularization, even when Si=0, the inversion pro-
cedure is stabilized �Eq. �B8��. The � act as a filtering factor,
giving the name Tikhonov filtering65 for this procedure.
Moreover, as this � damps the amplification of the diagonal
values of D for smaller values of Si in Eq. �B8�, this is also
known as damped least squares minimization procedure.65
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Abstract: Near-Infrared (NIR) tomographic image reconstruction is a
non-linear, ill-posed and ill-conditioned problem, and soin this study, dif-
ferent ways of penalizing the objective function with structural information
were investigated. A simple framework to incorporate structural priors
is presented, using simple weight matrices that have eitherLaplacian or
Helmholtz-type structures. Using both MRI-derived breastgeometry and
phantom data, a systematic and quantitative comparison wasperformed
with and without spatial priors. The Helmholtz-type structure can be seen
as a more generalized approach for incorporating spatial priors into the
reconstruction scheme. Moreover, parameter reduction (i.e. hard prior
information) in the imaging field through the enforcement ofspatially
explicit regions may lead to erroneous results with imperfect spatial priors.
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1. Introduction

Near Infrared (NIR) optical tomography is a method that useslight in the 650-900nm wave-
length range to recover images of the internal spatial distribution of tissue optical properties,
absorption (or chromophore concentrations) and scattering parameters[1-3]. When imaged at
multiple wavelengths, these quantities can be used to estimate tissue hemoglobin and water
concentration[3] and have the advantage of being acquired non-invasively and without ionizing
radiation. The imaging procedure can be rapidly or repeatedly applied to investigate physio-
logical state, and systems can be integrated into conventional imaging platforms such as X-ray
mammography, Ultrasound and MRI[4-9]. These hybrid systems have been shown to achieve
superior performance in terms of resolution and quantitative accuracy which should provide
more accurate physiological data from the tissue under investigation[4-16]. However, a funda-
mental question is how to utilize the spatial information from the clinical system to maximize
the accuracy of NIR tomography. In this study, the ability toimprove the quantitative accuracy
of regions imaged with NIR tomography was investigated, in the setting where prior spatial
information is readily available.

This work explores image reconstruction strategies that take advantage of multimodality im-
age data, in particular, the combination of MRI with NIR optical tomography for breast cancer
imaging. MRI provides structural information at high spatial resolution (near 1 mm), whereas
NIR imaging has relatively poor spatial resolution (near 4-7 mm). Yet MR imaging would ben-
efit from the molecular-specific signatures available through NIR[3, 16-18], specifically tissue
hemoglobin content, oxygenation level, and water, as well as scattering particle size and number
density [19]. The inverse problem (image reconstruction procedure) in NIR imaging is known
to be a non-linear, ill-posed and ill-conditioned problem [20]. Use of structural information in
NIR reconstruction schemes has been explored by several research groups. For example, Li et.
al [7] have used the data derived from X-ray mammography for choosing different regulariza-
tion parameters for the region of interest (ROI) and surrounding tissue, and have shown that
the contrast and resolution of the reconstructed images canbe improved. Srinivasan et al. [21]
have developed a three-step reconstruction process for improving the quantification accuracy of
small-objects in NIR tomography, where they use the conventional NIR reconstructed images
(first step) as a structural prior for the last two steps. Earlier papers have shown that optical con-
trast can be correlated to MR contrast [6, 9, 13] and that structural MRI images can be used to
reduce the number of unknown parameters to be estimated [14]. The difficulty with parameter
reduction approaches (referred to ashard-priors [22]) is the potential of introducing error by
imposing incorrect model assumptions and introducing variation due to uncertainty in the prior
information (even when the underlying model is appropriate). For example, the features which
lead to contrast in one imaging system may not be spatially coregistered with those that pro-
duce contrast in another imaging system. Further, segmentation of congruent features always
includes classification errors resulting from digitization. Recently, Boverman et. al [10] showed
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that even imperfect priors which encode breast background structure improves anomaly local-
ization, but at the expense of biasing the spectroscopic dimension of the image reconstruction.
Another type of approach for constraining the problem, often described as soft-priors, penal-
izes the variation within regions which are assumed to have the same properties by controlling
regularization. Brooksby et. al [15, 16, 23] have developeda Laplacian type of regularization
that allows intra-region variability. This is a method which works well even if the confidence in
the prior structural information is low.

This paper develops a more generalized framework, known as soft-priors, for incorporating
the structural priors into the NIR image reconstruction process, and explores a covariance-based
constraint scheme adopted from finite differencing of the Helmholtz equation in addition to the
soft and hard prior approaches noted above. The soft-prior approach allows optical property
variation with a given region, reducing biases caused by theuse of imperfect prior information.
The results indicate that imperfect structural information can generate errors in the hard-priors
case, whereas the soft-priors are able to quantify regions more appropriately. Simulation and
experimental studies are performed to demonstrate the superior reconstruction image quality.
These types of procedures are needed to improve NIR imaging both in terms of high spatial
resolution available from MRI and high contrast inherent inthe NIR signal.

2. Methods: mathematical formulation

2.1. Diffusion-based Light Transport Model

Light transport in breast tissue can be described accurately by the Diffusion Equation (DE),
which is an approximation to the Radiative Transport Equation (RTE) [24]. In the frequency-
domain, the DE is given by

−∇.D(r)∇Φ(r ,ω)+(µa(r)+ iω/c)Φ(r ,ω) = Qo(r ,ω) (1)

whereΦ(r ,ω) is the photon density at positionr and light modulation frequency is given byω
(in this work,ω = 100 MHz). The isotropic source term is represented byQo(r ,ω) and speed of
light in tissue byc. µa(r) is the optical absorption coefficient andD(r) is the optical diffusion
coefficient, which is defined as

D(r) =
1

3[µa(r)+ µ ′
s(r)]

(2)

whereµ ′
s(r) is the reduced scattering coefficient, which is defined asµ ′

s = µs(1−g). µs is the
scattering coefficient andg is the anisotropy factor. A Robin-type (Type-III) boundarycondition
is applied to exactly model the refractive-index mismatch at the boundary [25]. The boundary
data for a frequency domain system are the amplitude and phase of the measured signal, which
is used with a Finite Element Method (FEM) based reconstruction procedure to obtain the
internal spatial distributions ofµa andµ ′

s.

2.2. Standard image reconstruction

The objective function (Ω) for this procedure can be written as

Ω =
min

D, µa
{‖y−F(D,µa)‖2 +λ‖(D,µa)− (D0,µa0)‖2} (3)

Where,F is the forward operator that generates the model response and y is the experimental
measured data.‖.‖2 represents L2-Norm of the vector. This is also known as the Tikhonov
approach [27], whereλ is the regularization parameter that balances the current estimate of
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optical properties and the initial values, and the data-model misfit. More specifically, it is the
ratio of the variances of the data noise and the parameter (λ = σ2

y /σ2
(D,µa)

)[28]. Minimizing
Eq. (3) (by setting first derivatives with respect toµa andD to zero) leads to an update equation

(JTJ+λ I)(δD,δ µa) = JT(y−F(D,µa))−λ [(D,µa)− (D0,µa0)] (4)

Note that deriving this update equation is not so straight forward, the full derivation is given
in Ref. [28]. In Eq. 4,J is the Jacobian matrix andI is the identity matrix. Note thatJTJ is
ill-conditioned;λ I stabilizes the matrix. However, a slight deviation from this update equation
is generally employed, which is also known as the Levenberg-Marquardt (LM) regularization
method[29, 30], assuming [(δD,δ µa) = (D,µa)− (D0,µa0)] leading to [31]

(JTJ+2λ I)(δD,δ µa) = JT(y−F(D,µa)) (5)

Most of the literature reportsλ ∗ ≡ 2λ [20, 31], which is true only for the Levenberg-Marquardt
minimization which does not involve the parameter field in the objective function (Eq. 3)[29,
30]. A detailed discussion about different least-squares minimization methods is presented in
Ref. [28]. In this LM approach,λ ∗ typically starts being the ratio of the variances and is reduced
at each of the iterations by a small factor (in here, it is

√
10 and also multiplied by the maximum

of the diagonal values ofJTJ[21]). The iterative procedure is repeated until experimental data
matches with modeled data within a preset valueε (≈ data noise level). In general, the initial
values, (D0,µa0), are obtained from a pre-reconstruction step where the data is calibrated by a
homogeneous fitting procedure[32, 33].

2.3. Inclusion ofa priori information: Soft-Priors

The objective function with inclusion of prior informationis given as[15]

Ω =
min

D, µa
{‖y−F(D,µa)‖2 +λ‖L[(D,µa)− (D0,µa0)]‖2} (6)

Here alsoλ is the ratio of the variance of the data noise to parameter field andL is a penalty
matrix (dimensionless in all the cases considered in this work) which can be derived from MRI
structural priors as indicated below. The update equation resulting from this procedure is:

(JTJ+λLTL)(δD,δ µa) = JT(y−F(D,µa))−λLTL[(D,µa)− (D0,µa0)] (7)

In this work, each location in the computational discretized model is labeled according to tissue
type (fatty, fibroglandular or tumor) determined from MRI T1-weighted images[15, 16, 23]. It
was also assumed that there is no covariance between the different regions of the imaging
domain. Since the domain model does not itself change throughout the iterative reconstruc-
tion algorithm, the L-matrix is calculated before the reconstruction procedure and it is used
through out the process to penalize the solution. In implementation of Eq. 7 for simultaneous
reconstruction ofD andµa, using the Jacobian form described in Ref. [18] leads to the block
matrices

{[

HD2 HDµa
HDµa Hµa2

]

+

[

(λD)LT L 0
0 (λµa)LT L

]}[

δk
δ µa

]

=

[

(JT )D (y−F(D,µa))
(JT )µa (y−F(D,µa))

]

−
[

(λD)LT L(Di−1−D0)
(λµa)LT L

(

µai−1−µa0
)

]

(8)

whereH represents Hessian matrix (JTJ). SinceD and µa are considered to be independent
of each other in the estimation procedure, the cross-terms in the combined regularization ma-
trix (λLTL) become zero. Two forms for the L-matrix are discussed in thesubsections below,
including the Laplacian and Helmholtz structures.
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2.3.1. a Laplacian-type structured regularization matrix

The Laplace equation in parameteru(r) can be written as

∇2u(r) = 0 (9)

A finite difference approximation to this equation for ‘N’ number of equi-space (step size = h)
nodes can be written as [34]

∇2u(r)h2 ≈ u1 +u2 + . . .−NuN/2 + . . .+uN−1 +uN = 0 (10)

Dividing the whole equation by ‘-N’ leads to

−u1

N
+

−u2

N
+ . . .+uN/2 + . . .+

−uN−1

N
+

−uN

N
= 0 (11)

The L matrix is a matrix that relates each nodal property of the numerical model to all other
nodes. Therefore given a node i within the mesh, its relationship to another node j having
Laplacian structure (Eq. 11) within the same mesh can be given as [15, 16]

Li j =







0 if i and j are not in the same region
−1/N if i and j are in the same region
1 if i = j

(12)

where N is the number of finite element mesh nodes comprising agiven region. In this case,
LTL approximates a second-order Laplacian smoothing operatorwithin each region, and func-
tionally works to average the update within a region, while allowing discontinuity between
different regions.

2.3.2. a Helmholtz-type structured regularization matrix

The Helmholtz equation in parameter u(r) for a damped wave can be written as

∇2u(r)−κ2u(r) = 0 (13)

whereκ is the wave number, specificallyκ = 1/l , wherel covariance length[34].l also repre-
sents the decay length scale over which the parameteru(r) has correlation. Makingκ = 0, will
give the Laplace equation (Eq. 9). A finite difference approximation to this equation for ‘N’
number of equi-space (step size = h) nodes can be written as [34]

(

∇2−κ2)u(r)h2 ≈ u1 +u2 + . . .+[−(N+(κh)2)]uN/2 + . . .+uN−1 +uN = 0 (14)

Dividing the whole equation by ‘−(N+(κh)2)’ gives

u1

−(N+(κh)2)
+

u2

−(N+(κh)2)
+ . . .+uN/2 + . . .+

uN−1

−(N+(κh)2)
+

uN

−(N+(κh)2)
= 0

(15)
Writing this as a generalized L-matrix form similar to Eq. 12

Li j =







0 if i and j are not in the same region
− 1

N+(κh)2 if i and j are in the same region

1 if i = j
(16)

For the FEM nodes case,h is chosen to be the distance between the nodes. Moreover,κ = 1/l
is generally chosen to be the inverse of the size of the feature (tumor in this case) in the imaging

(C) 2007 OSA 25 June 2007 / Vol. 15,  No. 13 / OPTICS EXPRESS  8048



domain. This can be seen as using the best priors for the estimation of optical properties[28],
termed as best priors estimate (BPE). As the prior structural information is available through
MRI, l is chosen to be the diameter of the target (tumor) in the BPE case. In this case,LTL (L
given by Eq. 16) approximates a second-order Helmholtz smoothing operator. To determine the
effect ofκ on the parameter reconstruction, different values forκ are chosen. It is shown that
for small values ofκ , which corresponds to a large correlation length (l ), both Laplacian and
Helmholtz structures recover the same optical property distribution.

2.4. Inclusion ofa priori information: hard-priors

Reduction of parameter space to the number of regions segmented from a high resolution imag-
ing modality is known as hard-priors[28]. In this section, adetailed formulation for this ap-
proach is given. The estimation optical properties (D and µa) in this procedure is performed
through LM minimization, which was discussed in detail in Ref. [28]. The update equation
in this case is given by Eq. 5, with Jacobian having dimensionof (2*NM)x(2*NR) instead of
(2*NM)x(2*NN). In here, NM, NN and NR represent the number ofmeasurements, number of
FEM nodes, and number of regions, respectively. The multiplication factor 2 in the dimensions
results from the treatment of amplitude and phase separately for the frequency-domain signal,
and the estimated parameters beingD andµa. This transformation requires multiplication of
original Jacobian,J, by region mapper matrix (R)[22].

J̃ = JR (17)

where theR has dimension of (2*NN)x(2*NR), having a block formR=

[

Σ
Σ

]

. J can be also

seen as a block matrix withJ = [JD Jµa]. If RLj represented a segmented region (j) in the FEM
mesh for j = 1, 2, ...NR, thenΣ has the from

Σi j =

{

1 if i ∈ RLj

0 otherwise
(18)

Overall, the new JacobiañJ matrix elements were produced by adding the sensitivity of nodes
belonging to the same region[22]. Using̃J instead ofJ, in Eq. 5 gives the update of optical

properties of the segmented regions
(

˜δD, ˜δ µa

)

having dimension of (2*NR)x1. To map back

this solution vector to the original dimensions (2*NN)x1, requires

(δD,δ µa) = R
(

˜δD, ˜δ µa

)

(19)

It is also important to relaize that even though, NR≪NM, solving this might still be ill-
posed[20], leading to LM update equation[28].

3. Methods: simulations and experiments

3.1. Breast geometry - Effect of imperfecta priori information

The techniques described in Sec. 2 were used to reconstruct images from synthetic data with
1% random noise added. Numerical experiments using synthetic data generated on MRI T1-
weighted breast images with incorrect priors to show the effectiveness of soft-priors. Figure
1(a) (first column) shows the original distribution of threetissue layers, namely fatty (µa =
0.006 mm−1 andµ ′

s = 0.6 mm−1), fibro glandular (µa = 0.012 mm−1 andµ ′
s = 1.2 mm−1), and

tumor (µa = 0.018 mm−1 andµ ′
s = 1.8 mm−1) for the breast geometry (labeled as 0, 1 and 2

respectively, in Fig. 1(a) first column). Sixteen light collection/delivery fibers were arranged
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(a)

(b)

Fig. 1. (a) Simulatedµa andµ ′
s distributions from a breast (obtained from a volunteer) are

shown in the first column. Optical properties for the region labeled ‘0’ (fat) are:µa = 0.006
mm−1 andµs = 0.6 mm−1. Region ‘1’ (fibroglandular) values are:µa = 0.012 mm−1 and
µ ′

s = 1.2 mm−1. Region ‘2’ (tumor) values are:µa = 0.018 mm−1 and µ ′
s = 1.8 mm−1.

Reconstructedµa andµ ′
s images from different techniques with simulated data having 1%

random noise and imperfect structural information in defining region ‘1’ (7% reduction
compared to the original segmentation) are shown in the rest of the columns. The middle
two columns use soft prior structural information while the last column shows the result
with hard prior information. In the Helmholtz case,κ = 1/8 mm−1 (BPE) was used. (b)
Cross-sectional plots, along the dotted line in the actual image (see first column of (a)), of
true and reconstructedµa andµ ′

s distributions.
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equally spaced on a circle (indentions in Fig. 1(a)). In succession, one fiber was used as the
source while all other fibers served as detectors which provided a total of 240 measurements. In
these studies, the source was modeled as a Gaussian profile with a Full Width Half Maximum
(FWHM) of 3 mm to most accurately represent the light applied in the clinical system[35], and
was placed at a depth of one transport scattering distance from the tissue boundary. A mesh of
1785 nodes (corresponding to 3418 linear triangular elements) with uniform nodal density was
used for the diffusion model and reconstruction calculations[36]. A total of 7% of the glandular
layer (label-1) FEM nodes were labeled (relative to the original glandular layer nodes) as fat
(label-0) to introduce imperfect structural priors.

The same initial estimates (optical properties of region ‘0’) were used as homogeneous
starting conditions. The iterative procedure was stopped once the data-model misfit (residual)
did not improve by more than 2% when compared with the previous iteration. The starting
value forλ is chosen to be 25000 and 75 forµa andD respectively, derived from the noise
characteristics[28], for Eq. 5. For the case of Eq. 7, a starting value of 10 was chosen and was
decreased as the iterations progressed, this procedure is outlined in Ref. [21].

Table 1. Mean and standard deviation of the reconstructed (a)µa and (b)µ ′
s values in differ-

ent regions (labeled in first column of Fig. 1(a)) recovered with simulated data having 1%
random noise and imperfect structural information defining region ‘1’(7% reduction com-
pared to the original segmentation). The corresponding reconstructedimages are shown in
Fig. 1(a)

Methods Region-0 Region-1 Region-2
Actual 0.006 0.012 0.018

Laplacian 0.0064±0.0010 0.0117±0.0018 0.0156±0.0018
Helmholtz (κ = 1/8) 0.0062±0.0011 0.0120±0.0020 0.0156±0.0017

Hard Priors 0.006 0.0118 0.0843
(a)

Methods Region-0 Region-1 Region-2
Actual 0.6 1.0 1.8

Laplacian 0.63±0.10 1.13±0.18 1.67±0.23
Helmholtz (κ = 1/8) 0.64±0.09 1.09±0.16 1.64±0.22

Hard Priors 0.64 1.13 0.23
(b)

3.2. Breast geometry - effect of data noise level

The techniques described in Sec. 2 were used to reconstruct images from synthetic data with 1,
3, 5 and 10% Gaussian distributed noise to see the effect of data noise level on the reconstruction
techniques. The breast geometry (and the optical properties) were equivalent to the previous
section (Fig. 1(a)), however, perfect spatial priors were used. The same FEM mesh as described
above was employed in the forward and reconstruction problems. Optical properties of region
‘0’ were used as initial guess for the iterative procedure. The regularization parameter (λ ) and
stopping criterion was chosen according to each data noise level.

3.3. Phantom studies

A multi-layered gelatin phantom (86 mm diameter, 25 mm height) was fabricated with different
optical properties using heated mixtures of water (80%), gelatin (20%) (G2625, Sigma Inc.),
India ink for absorption, and TiO2 (titanium oxide powder, Sigma Inc.) for scattering[15] (see
Fig. 3). Different layers of gelatin were constructed by successively hardening gel solutions
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(a)

(b)

Fig. 2. (a) Reconstructedµa andµ ′
s images from different techniques with simulated data

having 5% random noise and perfect structural priors (actual imagesare shown in the first
column of Fig. 1(a)). The first column shows the reconstruction resultswithout the use of
prior information. The middle two columns use soft prior structural information while the
last row shows the result with hard prior information. In the Helmholtz case, κ = 1/8 mm−1

(BPE) was used. (b) The mean values and standard deviations (plotted as error bars) inµa

andµ ′
s for different regions of breast geometry (labeled in actual image) withincreasing

noise level (1% to 10 %).
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containing different amounts of ink and TiO2. A cylindrical hole (diameter of 16 mm and
height of 24 mm) was filled with liquid to mimic the tumor. The first column in Fig. 4 shows
the axial cross-section of three-layers of the phantom (Fig. 3) where the region labeled ‘0’ has
the optical properties (µa = 0.0065 mm−1 andµ ′

s = 0. 65 mm−1), similar to the typical fatty
layer in the breast[6] and a thickness of 10 mm. The fibroglandular layer (diameter 76mm)
has optical properties (region labeled ‘1’) ofµa = 0.01 mm−1 andµ ′

s = 1.0 mm−1. The tumor
(represented by the region labeled ‘2’) has a diameter of 16 mm with optical properties of
µa = 0.02 mm−1 and µ ′

s = 1.2 mm−1. The optical properties were validated by measuring
large cylindrical samples of each layer. Appropriate mixtures of Intralipid and India ink were
used to achieve the desired optical parameters of the tumor.Data was acquired using a clinical
NIR system[35] where the fibers were marked and photographedto extract region information
(analogous to MRI images). This regional information was used to label the corresponding
regions in the FEM mesh[15]. A mesh of 1785 nodes (corresponding to 3418 linear triangular
elements) was used for the diffusion model calculations anda mesh having 1360 nodes was
used in the reconstruction[36]. The meshes considered in this work have uniform nodal density
across the total computation volume. NIR data was calibrated using a reference homogenous
phantom to obtain initial optical properties estimates andminimize the variation between the
16 optical channels according to standard practice in humanimaging studies[32, 33].

Fig. 3. Photograph for gelatin phantom (representing the idealized two-dimensional cross-
sectional geometry shown as first column in Fig. 4(a)) used in the experimental studies.

4. Results

Reconstructedµa andµ ′
s images obtained from the noisy simulated data with imperfect (7%

error) glandular layer priors using the methods described in Sec. 2 are shown in Fig. 1. Using
hard priors, the total number of unknowns is reduced to 6 parameters (µa andµ ′

s for each of the
3 regions) and these images are presented in the last column of Fig. 1(a). The images from two
different approaches of soft-priors are shown in the middle2 columns; the first column shows
the expected results. For the Helmholtz case,κ = 1/8 mm−1 (BPE) was used, where 8 mm is
the diameter of the tumor. Cross-sectional plots of the reconstructedµa and µ ′

s distributions
along the dotted line in Fig. 1(a) (first column) are providedin Fig. 1(b). Table 1(a) and (b)
show the mean and standard deviation of the optical propertyestimations in each region of the
reconstructed images. Note that the NIR reconstruction procedure without prior information
(not shown) did not generate meaningful images in this complex case.

Figure 2(a) shows the reconstructed images from the data with 5% noise using all four tech-
niques described in Sec. 2. The first column of Fig. 1(a) showsthe actual distribution of optical
properties. Figure 2(b) shows the mean and standard deviation values (as error bars) of recon-
structed images using different techniques for different regions of the breast geometry with
increasing data noise level. In the Helmholtz case,κ = 1/8 mm−1 (BPE) was used. The ac-
tual values are also plotted for the comparison. It can be clearly seen Laplacian regularization
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gives lesser standard deviation for the absorption coefficient (µa) reconstruction compared to
the Helmholtz structure. On the other hand, Helmholtz structure performs better than Laplacian
in the case of scattering coefficient (µ ′

s).
A photograph of the phantom used to collect data at 785nm with16 fibers in a single plane

(giving 240 measurements) is shown in Fig. 3. Images obtained from the procedures described
in Sec. 2 are presented in Fig. 4(a) along with cross-sectional plots of the reconstructedµa

and µ ′
s distributions in Fig. 4(b). Table 2(a) and (b) show the mean and standard deviation

of the optical property estimations in each region of the reconstructed images. Here also, for
Helmholtz case, the BPE (κ = 1/16 mm−1) was used. Figure 5(a) gives the results for different
values ofκ (given on the top of the each column, true distribution is shown as first column
in Fig. 4(a)) in the Helmholtz case. Corresponding cross-sections are plotted in Fig. 5(b). The
mean and standard deviation values for each of this case are also given in Table 2(a) and (b).

5. Discussion

The reconstructed results (Fig. 1, 2, 4 and 5) show that the structural priors improve the re-
constructed image quality dramatically. The penalized problem formulation (different type of
regularizations) generates smoother images resulting in smaller standard deviations from the
mean values (see Table-2) as compared to the generalized problem that does not incorporate
prior information.

The hard-prior case produces significant optical property value error when the structural a
priori information is imperfect in the breast geometry (Fig. 1 and Table-1). In this case, a 7%
variation in the definition of the glandular layer caused false estimates of the optical proper-
ties. On the other hand, soft-priors (Laplacian and Helmholtz) yield good estimates for each
layer. Hard-priors over-estimate the tumor absorption coefficient by 360% and under-estimate
its scattering coefficient by 88% (Fig. 1). Soft-priors are within 6% of the expected values even
with the error in the structural prior. Note that in this particular case, hard-priors failed when
7% of glandular layer made as a fatty layer, yet below this error value it gave reasonable es-
timates of optical properties. It is also important to realize that this is only a test case of the
spatial-prior error progation. There is not enoughin-vivo data for a systematic investiagion of
spatial-error propagation in the reconstruction procedures, especially in the hard-priors case.

With perfect structural priors, increasing the data noise level also increases the quantification
error in the reconstructed images (Fig. 2(a) and(b)). Hard–Priors clearly fail in quantifying
the tumor optical properties as the data noise level increases. Soft–Priors does better in the
quantification than Hard–Priors. It is also evident that incorporation of structural information
is key for accurate quantification of the optical properties. The experimental results (Fig. 4)
from the three-layer gelatin phantom (Fig. 3) also show thatincorporation of perfect structural
information improves the quantification and quality of the reconstructed images. Specifically,
the mean and standard deviation of the reconstructed optical property values in each region are
both more accurate and more precise where the priors are included. The mean values (Table-2)
show that the absorption coefficient for the Region-0 (fat) is under-estimated by 77% in the case
of the Helmholtz regularization (BPE). This error can be explained by the fact that the Euclidean
distance between the nodes was used rather than the distancebetween the nodes along the
boundary of a particular region. Both Laplacian and Hard-Priors over estimate the scattering
coefficient of the tumor region by a factor of 2. It is known that the photon path length is affected
by the scattering coefficient. By constraining the problem based on the distance, one can expect
to estimate the scattering better. In this experimental case, table-2 indicates that the Helmholtz
technique produces more quantitative accuracy for the scattering coefficient estimation of the
tumor and the Laplacian technique is best for the absorptioncoefficient estimation (as well
as Fig. 2 and 4). Usage of the Helmholtz-type form for the diffusion part and the Laplacian-
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(a)

(b)

Fig. 4. (a) Actualµa andµ ′
s distributions (axial cross-section) of phantom (Fig. 3) case are

shown in the first column. Optical properties for the region labeled ‘0’ are: µa = 0.0065
mm−1 andµ ′

s = 0. 65 mm−1. Region ‘1’ values are:µa = 0.01 mm−1 andµ ′
s = 1.0 mm−1.

Region ‘2’ (tumor) values are:µa = 0.02 mm−1 andµ ′
s = 1.2 mm−1. Reconstructedµa and

µ ′
s distribution from different techniques (discussed in Sec. 2) from the experimental phan-

tom data. Second column of images does not use prior information. The middle rows use
soft prior structural information and the last row of images were recovered with hard priors.
In the Helmholtz case,κ = 1/16 mm−1 (BPE) was used. (b) Cross-sectional plots along the
dotted line in the actual image (see first column of (a)) of the true and reconstructedµa and
µ ′

s distributions.
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(a)

(b)

Fig. 5. (a) Reconstructedµa and µ ′
s images from the experimental phantom data using

Helmholtz-type regularization matrix for different values ofκ , which are given at the top
of each column. (b) Cross-sectional plots along the dotted line of the actual images in Fig.
4(a) (first column) are shown with the data from reconstructedµa andµ ′

s images in (a). The
best prior estimate (BPE) case (κ = 1/16 mm−1) is also presented for comparison.
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type form for the absoprtion part (in Eq. 8), may lead to a better estimation of both optical
properties, which will be considered as a future work. Underestimation of optical properties
in the regions ‘0’ and ‘1’ can be attributed to the random fluctuations in heating/cooling of
the gelatin solution especially in making layered phantom,which eventually changes optical
properties. Moreover, ink and TiO2 particles settling to the bottom, making the mixture less
homogenous also causes the change optical properties. These type of errors are more common
for layered gelatin phantoms[37].

Table 2. Mean and standard deviation of the reconstructed (a)µa and (b) µ ′
s values in

different regions (labeled in first column of Fig. 4(a)) recovered from the experimental
phantom data. The corresponding reconstructed images are shown in Fig. 4(a) and 5(a).

Methods Region-0 Region-1 Region-2
Actual 0.0065 0.01 0.02

No Priors 0.0025±0.0010 0.0045±0.0022 0.0120±0.0090
Laplacian 0.0031±0.0002 0.0051±0.0005 0.0174±0.0029

Helmholtz (κ = 1/16) 0.0015±0.0005 0.0058±0.0009 0.0241±0.0043
Hard Priors 0.0032 0.005 0.0213

Helmholtz (κ = 1/5) 0.0009±0.0006 0.0061±0.0008 0.0191±0.0031
Helmholtz (κ = 1/43) 0.0027±0.0003 0.0052±0.0007 0.0234±0.0043
Helmholtz (κ = 1/86) 0.0022±0.0005 0.0061±0.0032 0.0192±0.0044

(a)
Methods Region-0 Region-1 Region-2
Actual 0.65 1.0 1.2

No Priors 0.64±0.40 0.66±0.27 0.76±0.16
Laplacian 0.38±0.03 0.63±0.07 2.37±0.41

Helmholtz (κ = 1/16) 0.46±0.02 0.59±0.02 1.08±0.12
Hard Priors 0.37 0.63 2.74

Helmholtz (κ = 1/5) 0.60±0.01 0.57±0.01 0.82±0.06
Helmholtz (κ = 1/43) 0.39±0.03 0.63±0.03 1.19±0.13
Helmholtz (κ = 1/86) 0.39±0.03 0.63±0.04 1.21±0.14

(b)

Theoretically Helmholtz and Laplacian structures are identical whenκ = 0 (equivalentlyl
is large). Figures 5(a) and (b) (as well as Table-2) show thatwhen κ = 1/86 mm−1 (l = 86
mm is the diameter of the domain), Laplacian and Helmholtz structures give reasonably close
reconstruction values of optical properties, which indicates the expected trend presented in this
paper for the two methods. It also indicates that the BPE case(κ = 1/16 mm−1) gives the best
results, as the priors applied are close to the true structure of the feature (tumor). These results
also indicate that unreasonable constraints (likeκ = 1/5 mm−1, Fig. 5(a) first column) makes the
estimation problem amplify the noise resulting in physiologically invalid (scattering coefficient
is greater for fatty layer compared to fibroglandular layer)estimates of optical properties. In
the tumor region, asκ decreases, the estimated values of optical parameters become closer to
expected values (Table-2 and Fig. 5,κ = 1/43 andκ = 1/86 cases). This is due to the correlation
length becoming larger, making the covariance in the neighboring nodes larger.

In this study, it is shown that imperfect priors (commonly caused by improper image seg-
mentation and image artifacts in MRI or X-ray) can lead to error-prone results in the hard-prior
case whereas soft-priors are more immune to uncertainty in the prior data. It is also shown that
the techniques used to incorporate the soft structural prior information influences the image
outcome, which may lead to improvements in image accuracy ifproperly implemented. Srini-
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vasan et. al[38] have found that 5% error in optical properties introduces approximately 45%
error in the chromophore concentration when a limited number of wavelengths are used for
imaging. The correct “soft” inclusion ofa priori information therefore can be expected to lead
to a more accurate quantification of chromophore concentrations as well. It should be noted that
over-weighting of the penalty term in the problem formulation may make the solution ignore
the data-model misfit and emphasize smooth feature extraction. The techniques developed in
this work were applied for two-dimensional test objects, and can be easily extended to three-
dimensional case. A more extensive study of this is left for future investigations.

6. Conclusions

This work has investigated several ways of incorporating structural information into an itera-
tive image reconstruction. The results have been supportedby gelatin phantom experiments that
represent multi-layered structure which is commonly foundin breast tissue with adipose (fatty)
tissue on the exterior and fibroglandular tissue nearer to the interior. Soft-priors allow the tissue
optical properties to vary within predefined regions, unlike hard-priors which constrain these
zones to be homogeneous. Hard-priors were found to perform poorly when the prior informa-
tion contained area errors as small as 7% which can easily be produced by most segmentation
algorithms. True boundary extraction from MRI images introduces unavoidable segmentation
and discretization errors that are better tolerated when the structural information is encoded
through the soft-prior approach involving a penalty matrix.

The results reported here indicate that the optical properties of different tissue types can
be quantified more accurately when their estimation is properly guided by ”soft” structural
a priori information. The problem formulation and results presented in this work indicate
that data from other imaging modalities such as ultrasound or x-ray tomography, could
also be used as the source of the structural prior. In the experimental cases investigated,
the Helmholtz structure using best priors gave a better estimation of scattering coefficient
of the target (tumor). However, the Laplacian type of regularization leads to more superior
absorption coefficient estimate. So it is reasonable to conclude that Laplacian structure gives
the best estimates of total hemoglobin concentration (HbT ), hemoglobin oxygen saturation
(StO2%) and water fraction (H2O) (which are the main absorbers). Helmholtz structure gives
the best estimates of the scattering power and scattering amplitude (scattering parameters).
The framework presented here can also be extended to other regularization terms such as total
variation minimization or spectral prior constraints, which may be studied in future work.
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ABSTRACT

Three-dimensional (3D) diffuse optical tomography (DOT) is known to be

a non-linear, ill-posed and sometimes under-determined problem, where

regularization is added to the minimization to allow convergence to a unique

solution. In this work, a generalized least-squares (GLS) minimization method

was implemented, which employs weight matrices for both data-model misfit

and optical properties to include their variances and covariances, using a

computationally efficient scheme. This allows inversion of a matrix that is

of dimension dictated by the number of measurements, instead of by the

number of imaging parameters. This increases the computation speed up to

four times per iteration in most of under-determined 3D imaging problems.

An analytic derivation, using the Sherman-Morrison-Woodbury identity, is

shown for this efficient alternative form and it is proven to be equivalent,

not only analytically, but also numerically. Equivalent alternative forms for

other minimization methods, like Levenberg-Marquardt (LM) and Tikhonov,

are also derived. 3D reconstruction results indicate that the poor recovery of

quantitatively accurate values in 3D optical images can also be a characteristic

of the reconstruction algorithm, along with the target size. Interestingly, usage

of GLS reconstruction methods reduces error in the periphery of the image,

as expected, and improves by 20% the ability to quantify local interior regions

in terms of the recovered optical contrast, as compared to LM methods.

Characterization of detector (PMTs) noise have enabled the use of the GLS

method for reconstructing experimental data and showed a promise for better

quantification of target in 3D optical imaging. Use of these new alternative

forms becomes effective when the ratio of the number of imaging property

parameters exceeds the number of measurements by a factor greater than 2.

Keywords: near infrared, diffuse optical tomography, three-dimensional imaging, image re-

construction, inverse problems, least squares minimization.
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1. Introduction

Diffuse optical tomography (DOT) uses near infrared wavelengths (600-1000 nm) to obtain

optical absorption and scattering images for characterizing functional properties of the

tissue under investigation.1–4 The most important step in forming these images is solving

the inverse problem, i.e. estimating the optical properties by matching the experimental

data with modeled results in the least-squares sense.3,5, 6 This problem is typically ill-posed

and ill-determined depending on the noise in the data, the number of measurements and

the dimensions of the parameter space.6 Even though light travels in three-dimensions (3D),

most of the numerical models reported in the literature have been two-dimensional (2D)

because of computational considerations. Moreover, the 3D DOT imaging problem is more

under-determined relative to the 2D case and has been found to generate poor quantitative

estimates of the optical properties when compared to 2D results.7–14 Several methods

have appeared in the literature describing efficient 3D computations,11,14,16 but no unified

approach to the problem has been discussed. Recently, a generalized least-squares (GLS)

minimization scheme was presented for 2D DOT image reconstruction.17 This paper reports

a computationally efficient approach for implementing GLS minimization in 3D which shows

an improvement in the quantification of optical properties relative to earlier studies. Even

though the focus is on GLS implementation, equivalent forms for other methods are also

presented in light of the GLS framework.

The inverse problem in DOT is solved by minimizing the objective function (Ω) over

the range of optical properties (μ). Methods based on gradient optimization, which do not

require an explicit inversion of the Hessian matrix 1 (in general some form of JTJ, J being

the Jacobian) are known to be computationally efficient.18,19 But these methods require

an optimization scheme, which can be thought of as an inner iteration, for choosing the

step-size, and are not as straight forward as a direct inversion of the matrix. Alternatively,

the full-Newton methods require calculation of the Jacobian (J), the forward data, and

inversion of the dense Hessian matrix at each iteration. Because full-Newton methods are

relatively easy to implement, they are widely used for DOT image reconstruction even

though they require large matrix inversions at every iteration. Thus, while the full-Newton

method is ideal for small problems, it rapidly becomes intractable for larger domains, such

as those encountered in 3D imaging problems. This manuscript presents a formal approach,

using the Sherman-Morrison-Woodbury identity, to construct a more efficient alternative

forms of update equations of GLS and Levenberg-Marquardt (LM) minimization schemes,

which generates a Hessian matrix to invert. The dimension of this Hessian is dictated by

the number of measurements, rather than the number of parameter estimates which can

1Here, Hessian approximates the second derivative, this can be some form equivalent to JT J or JJT
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be considerably lower for highly under-determined problems, and therefore, much more

efficient computationally. This equivalent form is also shown for other common minimization

method, namely Tikhonov.

Later part of this paper describes a way to characterize the systematic noise using a simple

analytical formula, when photomultiplier tube (PMT) used as a detector. Characterizing

noise behavior of the experimental data lead to use of the GLS technique in the experimental

data case and it is also shown that usage of noise characterstics will lead to better quality

and quantification of target in a experimental test case.

2. Diffuse Optical Tomography: Forward Problem

Near-infrared (NIR) light propagation in a biological tissue like breast can be modeled using

the Diffusion Equation (DE)6,20 which in the frequency domain, becomes

−∇.D(r)∇Φ(r, ω) + (μa(r) + iω/c)Φ(r, ω) = Qo(r, ω) (1)

where the optical diffusion and absorption coefficients are given by D(r) and μa(r), respec-

tively. The light source, represented by Qo(r, ω), is modeled as isotropic. Φ(r, ω) is the photon

fluence rate at a given position r. The light modulation frequency is denoted by ω, where

ω = 2πf, (here f = 100 MHz). The velocity of light in tissue is represented by c, which is

assumed to be constant. Note that

D(r) =
1

3[μa(r) + μ′
s(r)]

(2)

where μ′
s(r) is the reduced scattering coefficient which is defined as μ′

s = μs(1 − g). μs is

the scattering coefficient and g is the anisotropy factor. The finite element method (FEM) is

used to solve equation (1) to generate modeled data (G(μ)) for a given distribution of optical

properties (μ),11,13,21 where μ= [μ′
s(r); μa(r)]. A Type-III boundary condition is employed

to account for the refractive-index mismatch at the boundary.22 Under the Rytov approxi-

mation, the data (y) becomes the natural logarithm of the amplitude (A) and phase (θ) of

the frequency-domain signal; y = [lnA; θ].

3. Diffuse Optical Tomography: Inverse Problem

3.A. Levenberg-Marquardt (LM) Minimization

The most-common approach for solving the inverse problem in DOT is Levenberg-Marquardt

(LM) minimization.1,6, 11,13,17,20,23,24 A detailed discussion of this method is available in

Ref.17 and it is only briefly reviewed here.
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The objective function25,26 for this approach is defined as

Ω = ‖y − G(μ)‖2 (3)

where y is the experimental data and G(μ) is the modeled response. Minimization of this

objective function with respect to μ is achieved by setting the first-order derivative equal to

zero
∂Ω

∂μ
= JT δ = 0 (4)

where δ is the data-model misfit, δ = y − G(μ), and J represents the Jacobian (J = ∂G(μ)
∂μ

).

Due to the ill-conditioned nature of the problem, the update equation for the optical prop-

erties at iteration ‘i’ is regularized to be

�μi =
[

JTJ + αI
]−1

JT δi−1 (5)

or equivalently (See Appendix-A.2)

�μi = JT
[

JJT + αI
]−1

δi−1 (6)

where �μi represents the update of the optical property parameters at the ith step. α is the

regularization parameter, which monotonically decreases with increasing iteration (always

> 0).26 In this approach (Eq. 5), the Jacobian is normalized by its optical properties.

Moreover, α is chosen empirically (it typically starts at 10 and reduced by a factor of 100.25

at every following iteration after being multiplied by the maximum of the diagonal values of

JJT .17,27). The iterative procedure is stopped when the L2 norm of the data-model misfit

(δ) does not improve (in our experience, by more than 1% because beyond these values the

LM procedure can become unstable17).

Even though LM minimization or its modified versions have been used successfully for

DOT image reconstruction,1,6, 11,13,17,20,23,24,27 the final image depends on the choice of α

due to the ill-conditioned nature of the problem. Moreover, the approach ignores the noise

characteristics of the data and optical properties. A more systematic and generalized method

for image reconstruction can be based on GLS minimization. The GLS scheme is discussed

extensively in Ref.17 and is only briefly reviewed here.

3.B. Generalized Least Squares (GLS) Minimization

In GLS, the objective function is given by17,28

Ω = (y − G(μ))TWδ(y − G(μ)) + (μ − μ0)
TWμ−μ0(μ − μ0) (7)

where Wδ and Wμ−μ0 are the weight matrices for the data-model misfit (δ) and optical

properties (μ-μ0), respectively. Note that Wδ = (Cδ)
−1, where C represents the covariance
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matrix, and similarly Wμ−μ0 = (Cμ−μ0)
−1 (see Appendix:A-4 of Ref.28). These weight ma-

trices are symmetric and positive definite (because they are inverses of covariance matrices).

No regularization parameter is involved because the weight matrices include the noise char-

acteristics of the experimental data and optical properties.17 Similarly to the LM approach,

minimization of Ω (Eq. 7) is accomplished by setting the first derivative of Ω with respect

to μ equal to zero:
∂Ω

∂μ
= JTWδδ − Wμ−μ0(μ − μ0) = 0. (8)

Linearizing the problem leads to the iterative update equation (for ith iteration)17

�μi =
[

JTWδJ + Wμ−μ0

]−1 (

JTWδδi−1 − Wμ−μ0(μi−1 − μ0)
)

(9)

Explicit definitions of the weight matrices (Wδ and Wμ−μ0) are given in Ref.17 Although

any number of forms for Wμ−μ0 can exist, only one is considered here, specifically, where

the covariance matrix is defined as17

[Cμ−μ0 ]ij = (σμ−μ0)
2
(

1 +
rij

l

)

e−
rij
l (10)

with l being the correlation length (here l = 15 mm) and rij being the distance between the

FEM nodes i and j. (σμ−μ0)
2 is the expected variance of μ − μ0. Strategies for calculating

the expected variance are given in Ref.17 In this work, the expected variance is determined

from the prior knowledge that the expected contrast between tumor and normal tissue is

about 50-400%. To demonstrate the robustness of the GLS reconstruction procedure, for the

results discussed here, the variance was chosen to be (4 ∗μ)2. Both weight matrices, Wδ and

Wμ−μ0 , are computed before the reconstruction procedure begins, whereas the Jacobian (J),

and modeled data, G(μ), are calculated at each iteration. The iterative procedure is stopped

when the L2 norm of the data-model misfit (δ) does not improve by more than 0.001%.

Beyond these values, the round-off error dominates.

3.B.1. GLS Implementation

The parameters recovered in the case of this GLS scheme are (μ′
s; μa), which is different

from some previous approaches that estimate (D; μa). The later case has a mismatch

because the units of D are mm whereas those of μa are mm−1. In its implementation

typically the whole equation is normalized by the optical properties (outlined in Ref.17)

which becomes computationally intensive especially for GLS in 3D because the update

equation must be left and right multiplied by the optical properties at every iteration.

Here, the GLS problem was reformulated in terms of (μ′
s; μa), so that both parameters have

same units (mm−1). While this is a relatively minor alteration in the form of the algorithm,

it has important implications for the computational time required for matrix preconditioning.
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A simple transformation converts the diffusion part of the Jacobian (∂G(μ)
∂D

) to its scattering

component (∂G(μ)
∂μ′

s
):

∂G(μ)

∂μ′
s

=
∂G(μ)

∂D

∂D

∂μ′
s

(11)

Using Eq. 2
∂D

∂μ′
s

=
1

3

( −1

[(μa + μ′
s)]

2

)

= −3D2 (12)

and substituting Eq. 12 in Eq. 11, leads to

∂G(μ)

∂μ′
s

=
∂G(μ)

∂D
(−3D2) (13)

After this transformation (Eq. 13) the Jacobian (J) has the form

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂lnA1

∂μ′
s1

∂lnA1

∂μ′
s2

. . . ∂lnA1

∂μ′
sNN

∂lnA1

∂μa1

∂lnA1

∂μa2
. . . ∂lnA1

∂μaNN

∂θ1

∂μ′
s1

∂θ1

∂μ′
s2

. . . ∂θ1

∂μ′
sNN

∂θ1

∂μa1

∂θ1

∂μa2
. . . ∂θ1

∂μaNN

∂lnA2

∂μ′
s1

∂lnA2

∂μ′
s2

. . . ∂lnA2

∂μ′
sNN

∂lnA2

∂μa1

∂lnA2

∂μa2
. . . ∂lnA2

∂μaNN

∂θ2

∂μ′
s1

∂θ2

∂μ′
s2

. . . ∂θ2

∂μ′
sNN

∂θ2

∂μa1

∂θ2

∂μa2
. . . ∂θ2

∂μaNN

...
... . . .

...
...

... . . .
...

∂lnANM

∂μ′
s1

∂lnANM

∂μ′
s2

. . . ∂lnANM

∂μ′
sNN

∂lnANM

∂μa1

∂lnANM

∂μa2
. . . ∂lnANM

∂μaNN

∂θNM

∂μ′
s1

∂θNM

∂μ′
s2

. . . ∂θNM

∂μ′
sNN

∂θNM

∂μa1

∂θNM

∂μa2
. . . ∂θNM

∂μaNN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

where NM and NN represents the number of measurements and number of property param-

eters associated with the FEM mesh, respectively. The implementation of the GLS update

equation (Eq. 9) requires assembly of the weight matrix (Wμ−μ0) for simultaneous recon-

struction of μ′
s and μa and is accomplished by writing Eq. 9 in block matrix form

{[

H
μ′

s
2 Hμ′

sμa

Hμ′
sμa

H
μa2

]

+
[

Wμ′
s−μ′

s0
0

0 Wμa−μa0

]} [

�μ′
si

�μai

]

=
[

(JT )μ′
s

Wδδi−1

(JT )μa Wδδi−1

]

−
[

Wμ′
s−μ′

s0

“
μ′

si−1 − μ′
s0

”

Wμa−μa0

“
μai−1 − μa0

”
]

(15)

where H represents the Hessian matrix (JTWδJ). Here, the cross-terms in the weight

matrix (Wμ−μ0) are zero because μ′
s and μa are independent parameters in the estimation

procedure. Note that the dimensions of the matrices in Eq. 9 are: J: 2NM x 2NN, Wμ−μ0 :

2NN x 2NN, Wδ: 2NM x 2NM, δ = 2NM x 1, and �μ = 2NN x 1. Most 3D-DOT problems

are ill-determined, i.e. NM � NN.

Computing an update of the optical properties (�μi, from Eq. 9 ) requires an inversion

(or its equivalent) of a large matrix with dimensions 2NN x 2NN. Inverting a matrix of

dimension NxN, typically requires an order of N3 operations and N2 memory.28 Hence, any

gain in reducing the dimensionality of the matrix to be inverted, will reduce the computation
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time cubically and the memory requirement quadratically. An alternative from of Eq. 9, which

requires few operations is

�μi =
[

I − Cμ−μ0J
T

(

JCμ−μ0J
T + Cδ

)−1
J
]

{

Cμ−μ0J
TWδδi−1 − (μi−1 − μ0)

}

(16)

Full derivation of this alternative form is given in the appendix (A.1) along with the

equivalent expressions for other minimization methods. Eq. 16 requires an inversion of a

matrix with dimensions 2NM x 2NM (same is true for Eq. 6).

Note that the covariance/weight matrices are calculated before the start of the iterative

procedure and are used throughout the iteration. For nodes where the sensitivity (column

sum of Jacobian) fell below 1% of the maximum sensitivity, the expected variance of the

optical properties was chosen to be 1% of background μ (in Eq. 10).

4. Simulation Studies: Three-dimensional Test Problem

For all numerical experiments discussed here, the imaging domain was chosen to be

cylindrical (as shown in Fig. 1) with a diameter of 84 mm and height of 109 mm. The

background optical properties were μa = 0.01 mm−1 and μ′
s = 1.0 mm−1. Two meshes were

used: (1) a cylinder consisting of 21,440 nodes corresponding to 110,483 linear tetrahedral

elements for the forward model and (2) a cylinder having 9,211 nodes corresponding to

45,980 linear tetrahedral elements for the reconstruction. The data-collection geometry

consisted of 48 fibers that were arranged in a circular, equally-spaced fashion in three layers

spaced 10 mm apart (Fig. 1), with 16 fibers per plane. One fiber was used at a time as the

source while the fibers in the same “source fiber plane” were used as detectors to generate

720 (3x16x15) measurement locations or a total of 1440 values (720 lnA data points and

720 θ data points). The sources were modeled as a Gaussian profile with a full-width half

maximum of 3 mm to represent the distribution used in an experimental setup.29 The source

was also placed one mean transport scattering distance inside the boundary.

Both spherical and cylindrical objects were considered as targets. The cylindrical target

had a contrast of 2:1 with the background in both μa and μ′
s and a diameter of 15 mm. It

extended in Z-direction throughout the domain (height of 109 mm) and was placed at the

center (at (0,0), first row of Fig. 5) and near the boundary (at (30,0)). Two-dimensional

cross-sections of both reconstructed and actual 3D volumes are displayed in increments of

5 mm spanning from z = -25 mm to z = 25 mm (from left-hand side to right-hand side)

are shown in Figs. 3, 5, and 6. Cross-section below z= -25 mm and beyond z = 25 mm

did not show any deviation from the starting values of iterations as the sensitivity in this

region is almost negligible compared to the rest of the domain, so these cross-sections are
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omitted for display purposes. Measurements with a noise level of 1% were assumed as the

experimental data (y) in most of the cases discussed here. The noise variance was also

used with GLS reconstruction algorithm.17 The background optical properties were selected

as starting values for the iterative image reconstruction procedures discussed in Sec.3. All

computations were carried out on a Linux work station with an AMD Dual Core Opteron

280 processor (2.2 GHz) with 8GB of RAM.

5. Phantom Studies

5.A. Data variance estimation

Use of weight matrices in the GLS scheme (Wδ in Eq. 9) requires an estimation of data

variance, which requires experimental characterization of the expected values, prior to

patient/phantom imaging. This was achieved by tracking the detected voltage measured

at the photo multiplier tube (PMT). PMTs are used as a detectors in the experimental

system at Dartmouth, details of the experimental system are given in Ref.29 Note that this

characterization includes only systematic errors associated with low signal levels, but errors

due to poor fiber-tissue coupling are not accounted for in this model.

Starting from the assumption that the detected signal using a PMT in diffuse optical

imaging is shot noise limited leads to

σ =
√

N (17)

where σ is the standard deviation in the detected signal and N is the number of photons

reaching the PMT. The voltage (V ) measured at the PMT is directly proportional to N ,

which also implies that amplitude (A) of the detected frequency domain signal (y) is pro-

portional to this voltage. This is written as

A ∝ V =⇒ A = kV

σ(A) = kσ(V )
(18)

here, k acts as a proportionality constant. In the reconstruction procedure, the Rytov ap-

proximation is used, leading to data being represented as lnA rather than A. If f(x) is a

function of x and is continuous and differentiable, then

σ (f(x)) =
∂f(x)

∂x
σ(x) (19)

similar to the previous equation (Eq. 19), writing the standard deviation of lnA leads to

σ(lnA) =
1

A
σ(A) (20)
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now using Eq. 18 leads to

σ(lnA) =
σ(V )

V
(21)

From the above equation (Eq. 21), it can be concluded that the variance in data (σ2) can

be known by measuring the deviation in the PMT voltage (V ).

To measure the deviation in the measured signal, a series of light signal measurements

were taken through a homogeneous intralipid phantom experiments were conducted with

increasing levels of blood (HbT) concentration, varying from 7.3 μM to 36 μM, leading

to a decrease in the measured PMT voltage. To achieve this, the gain of the PMT was

kept at 0.9. A concise discussion of the PMT gain setting in the system characterization is

given in Ref.29 A single source and the farthest detector was used for these transmission

measurements. For every concentration, 200 data points were collected to estimate the

deviation in the measured voltage using the same gain settings. The approach for the

characterization is similar to the one described in Ref.,29 except the raw detected voltage

was used here for estimation of the error (or deviation σ). Note also that two sets of

diameters, 56 mm and 84 mm, were used to get the voltage in the range of 0-1 volts. This

was repeated for all the wavelengths to ensure uniformity of performance in the signal, and

to ensure that the obeserved trend was independent of wavelength and gain setting.

Figure 9 gives a plot of error (σ(V )/V ) as a function of measured PMT voltage for 785

nm wavelength. A similar trend was observed for other wavelengths. This plot also gives a

deviation in phase (σ(θ)) in degrees for the same voltage. Each of these points represents

a sample size of 200. The lowest measured voltage of PMT was 0.001 volts. The measured

deviations were 1% for lnA and 0.5o for θ for PMT voltages above 0.005 volts. These values

are similar to the ones reported in the literature (Mcbride et. al29 reported 0.32% for the

PMT voltage and 0.48o in phase). A solid line in Fig. 9 shows these average deviation using

1/V2 fitting (following the shot-noise model). From this plot, the weight matrix for the

data-model misfit (Wδ in Eq. 9) can be written as

[Wδ]ij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if i 
= j
1

[(5.7/V 2)+0.6]2
for lnA with V ≥ 0.001 if i = j

1
[(1.3/V 2)+0.4]2

for θ with V ≥ 0.001 if i = j

1 for lnA with V < 0.001 if i = j
1

(θ)2
for θ with V < 0.001 if i = j

(22)

This implies that if the PMT voltage is below 0.001 volts, the signal is considered to be in

the noise floor. For the signals above 0.001 volts, the variance can be estimated using 1/V2
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fitted curve (Eq. 22). This characterization enables the usage of the GLS scheme in the case

of experimental data, with a requirement that the voltage measured at the PMT is available.

5.B. Gelatin Phantom

A multi-layer cylindrical gelatin phantom of diameter 86 mm, height 25 mm was fabricated

using different mixtures of India ink for absoprtion and Titanium oxide (TiO2) for scattering.

These different layers of gelatin were fabricated by successively hardening heated gelatin

solutions (typically 80% deioinized water and 20% gelatin (G2625, Sigma Inc)) along with

different amounts of ink and TiO2 (Sigma Inc). A cylindrical hole extending in Z-direction

(diameter of 16 mm and height of 24 mm) filled with intralipid mixed with india ink acted

as a target having the optical properties μa = 0.02 mm−1 and μ′
s = 1.2 mm−1. The outer

layer with optical properties μa = 0.0065 mm−1 and μ′
s = 0.65 mm−1 had a thinkness of 10

mm mimicing the typical fatty layer of the breast.46 The middle layer with 76 mm diameter,

mimicing fibroglandular layer, had optical properties μa = 0.01 mm−1 and μ′
s = 1.0 mm−1.

Validation of individual layers optical properties was performed by the data collected on

large cylindrical samples of each layer using 785 nm wavelength laser diode as the source.

Two-dimensional cross-sections of this gelatin phantom optical properties are displayed in

increments of 2.5 mm spanning from z = -12.5 mm to z = 12.5 mm (from left-hand side

to right-hand side) in top rows of Fig. 10 (a) and (b). In this phantom case, data was

collected using only one layer of fibers (at z = 0 mm) leading to 240 lnA data points and

240 θ data points. A cylindrical mesh consisting 8990 nodes corresponding to 44803 linear

terahedral elements was used and the experimental data was also calibrated using a reference

homogenous phantom data. The outer layer (mimicing fatty layer) optical properties were

used as initial guess for reconstruction procedures. A second mesh with the same geometry

contianing 3718 nodes (16627 linear tetrahedral elements) was used as a reconstruction mesh.

6. Results

The number of operations required to produce an optical property update (�μi) for both the

original and alternative GLS update equations (Eqs. 9 and 16, respectively) was compared

as a function of the ratio of the number of estimation parameters (NN) to the number of

measurements (NM). A similar comparison for LM update equations (Eqs. 5 and 6) was also

performed. The results are plotted in Fig. 2(a) and (b) respectively. The expressions used

for calculating the number of operations are given in Appendix-A.4. Memory required for

implementing these inversions are presented in Fig. 2(c). To relate the analysis to existing

experiments, NM was chosen to be 720. The number of nodes (equivalently estimation

parameters) was varied from 2 to 80,000. The number of computations increases for both

LM and GLS cases as NN increases, but the alternative form for GLS (GLS-AF) has a
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lower computational cost when NN/NM is greater than 6. In the case of alternative form

LM (LM-AF), this is when NN/NM is greater than 2. In terms of memory, as soon as

NN > NM , both GLS-AF and LM-AF requirement is less than GLS and LM counterparts.

In order to assess algorithm performance, a series of test reconstructions were evaluated.

Data with 1% noise from the cylinder containing a 15 mm diameter spherical target (first

rows of Fig. 3(a) and (b)) was reconstructed for the optical properties using LM and

GLS techniques (middle and last rows and Fig. 3(a) and (b)). In the case of the GLS

scheme, the reformulated update equation (alternative form - Eq. 16) was used (last rows

of Fig. 3(a) and (b)). However, it was also important to confirm that the two forms of

the update equation (Eqs. 9 and 16) produced numerically equivalent solutions. Figure

4 shows a comparison of results generated with the original GLS update equation (Eq.

9) and its alternative form (Eq. 16) in terms of data-model misfit (δ) and reconstructed

optical properties. The difference plots (Figs. 4(b) and (d)) demonstrate that Eqs. 9 and

16 are equal within the limits of the numerical precision to be expected (< 10−8 of the

L2-norm value, after the first few iterations). A similar analysis between the original LM

update equation (Eq. 5) and its alternative form (Eq. 6) was performed gave similar results

(not shown here). Reconstruction results with different target shapes and positions are

summarized in Table-1 which reports the mean and standard deviation of recovered μa and

μ′
s values in the background and target areas. Note that the recovered optical properties

between Z = 15 mm and Z = -15 mm were used because the reconstructed optical properties

were equal to the actual background values and the standard deviation was zero (within

round-off error limits) above/below these Z-values.

To show the robustness of the GLS procedure, data with 5% noise was used in the

reconstruction of a cylindrical target located in the center (as shown first rows of Fig. 5(a)

and (b)). The reconstruction results using the LM and GLS schemes are presented in middle

and last rows of Fig. 5(a) and (b) respectively. The GLS minimization technique was able

to localize the target more clearly than the LM method.

To see the effect of target size on the recovery of its contrast using these reconstruction

techniques, a series of simulations were performed where the diameter of the spherical target

located at the center was varied (from 10 to 35 mm). One set of results is presented for the

15 mm diameter target in Fig. 3. Another sample set for a target with diameter of 10 mm

is shown in Fig. 6. A comparison plot is given in Fig. 7. The data noise level for the cases

considered here is 1%. Increase in the diameter of the spherical target increases the contrast

recovery.
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A performance comparison of these reconstruction techniques with increases in target

(spherical object with diameter of 25 mm) contrast (from 2 to 10 with respect to background

optical properties) located at the center (0,0,0) and (20,0,0) is presented in Fig. 8. Again,

the noise level in the data was 1%. The recovery of contrast is much lower in the case of

the centered target compared to the off-centered location in both LM and GLS techniques.

Between the LM and GLS methods, the later performs better in terms of recovery of contrast.

A study was conducted to evaluate estimation parameter independence (cross-talk) in

these reconstruction procedures. The spherical target having a contrast of 2:1 only in μa

was considered at the center and near the boundary of the imaging domain. Synthetic data

with 1% noise was used in the reconstructions, and the results are presented in Table-2 in

terms of recovered mean and standard deviation of the optical properties . The recovery of

contrast was higher in the GLS case and the amount of cross-talk was less (roughly 50% in

the LM case compared to 30% in the GLS case). A similar study with a contrast of only

in μ′
s was also conducted (not shown )and it also showed a similar trend in terms of cross-talk.

Finally, using the experimental data (Sec. 5.B) collected using a multi-layered gelatin

phantom, reconstructions using both LM and GLS techniques were performed. For the GLS

technique, experimental data variance was estimated (Sec. 5.A) using analytical equation,

given in Eq. 22. Two-dimensional cross-sections of the actual and reconstructed optical prop-

erties distribution are plotted in Fig. 10 (a) and (b). The middle and bottom rows corresponds

to the reconstruction results obtained by LM and GLS techniques. As the variance in the

data (noise charterstics) are embedded in the GLS reconstruction procedure, resulting in

optimal weighting (highly noisy data points gets less weightage and vice versa for less noisy

data points), leading to better quantification of tumor region.

7. Discussion

Appendix (A.1) presents a computationally efficient form for implementing an iterative GLS

reconstruction scheme which reduces the dimensionality of the matrix to be inverted. The

alternative forms for other minimization methods are also developed in the appendices (A.2

and A.3). Appendix-A.4 presents expressions for estimating the operations count of both

forms of the GLS update equations (Eqs. 9 and 16) for a single iteration. This appendix

(A.4) also gives operations count for both LM and its alternative form (Eqs. 5 and 6) as

well. Fig. 2 shows a log-log plot of operations count as a function of the ratio of number

of optical property parameters (NN) to number of measurements (NM) which determines

the form of the GLS and LM update equation to be preferred (given that both produce
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numerically equivalent results as reported in Fig. 4). For example, when spatial-priors are

available, the number of optical unknowns can be reduced to the number of regions that

can be segmented32 which in the case of breast tissue, is typically NN = 3 (assuming fatty,

fibroglandular and tumor regions).32 Here, since NM � NN, the original LM and GLS

update equation (Eqs. 5 and 9 respectively) is effective. In under-determined problems, such

as the cases considered in this paper, where NM � NN (NN/NM ratio of 12 in the test

problems), the GLS alternative form reduces the number of operations (by up to two times

in Fig. 2(a) when NN/NM = 12). In fact, the alternative form of the GLS update equation

(Eq. 16) becomes effective once NN/NM > 6 and the number of operations decreases by an

order of magnitude when NN/NM reaches 100. For the LM minimization scheme, alternative

form reduces the number of operations by a factor of 6 in Fig. 2(b) when NN/NM = 12. The

memory required for inverting such matrices is plotted in Fig. 2(c) as a function of NN/NM.

It is also important to recognize that the memory required to complete these operations

can become critical because the cache sizes and RAM available on different architectures is

variable but influences the efficiency of the computational processes executing on a given

platform.

Under-determinedness of the imaging problem (i.e. NN/NM > 1) leads to non-uniqueness

in the solution space, but regularization helps to give a unique solution in these cases.

Typically NN/NM values are between 2 to 10 for a typical two-dimensional (2D) problem,

as the choice depends on the expected resolution in the reconstructed image, imaging

domain size, shape, data-collection geometry and prior information available. For a 3D

problem, this choice (NN/NM values) also depends on these factors, but one expects this

ratio to be higher than the 2D case as the imaging domain size is bigger reflecting in the

number of imaging parameters (NN) to be larger (Typical example: NN = 600 (in 2D) and

6000 (in 3D)). Ideally, one would like to have this ratio (NN/NM) constant between 2D

and 3D, which implies that the number of measurements has to increase by the same factor

(typical case requires a factor of 10), which might not be feasible due to instrumentation

constrains.24 This leads to choice of NN/NM greater than 6 at least, where the derived

forms are effective (even though in the case of LM, the alternative form is effective when

NN/NM > 2). It is also important to note that, ideally one would like mesh the volume

where the sensitivity is greater (for the imaging domain discussed here z between -25 mm

and 25 mm) finer and rest of the domain coarser, to keep NN/NM in the same range as in

2D (typically 3-8). This adaptive meshing gets trickier when the patients are imaged, in

our experience, we could not find appropriate tools that could be used in real-time for this

meshing problem. Even though efforts to solve this patient-specfic adaptive meshing is being

pursued.30,31 Even when NN/NM = 3 (lowest ratio one expects in a 3D imaging problem),
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from Fig. 2(b), the alternative form (LM-AF, Eq. 6) in the case of LM minimization scheme

becomes effective.

Figure 4 demonstrates that the two GLS update forms (Eqs. 9 and 16) are equivalent

numerically (within the numerical precision of the L2 norm value). For the cases considered

here, the computation time for each iterative update using Eq. 16 was approximately 46

minutes, which was three times faster than with Eq. 9 (computation time ∼ 126 minutes

per iteration). In terms of operations count, a factor of 2 reduction would be estimated

from Fig. 2(a) for the NN/NM ratio involved. The deviation in run-time that occurs in

practice is likely due to the cost of memory management alluded to above in the case of

Eq. 9. It is also important to note that implementation of Eq. 9 requires an inversion of

the covariance matrix (Eq. 10), whereas this matrix can be used directly in Eq. 16. In the

case of Levenberg-Marquardt (LM) update equations, computation time for an iteration

using Eq. 6 was approximately 21 minutes and for Eq. 5 was 91 minutes. The deviation

from factor of 6 (from Fig. 2(b)) is mainly due to the memory required to perform these

operations, which affects run time in turn.

Middle and last rows of Fig. 3(a) and (b) indicate that with 1% noise in the data, LM has

failed to recover μa in a spherical target with a diameter of 15 mm located at the center,

whereas GLS was able to identify the target very well. The failure of LM minimization is

indicative of a lack of sensitivity at the center of the domain24 which is improved through

the GLS approach by including the noise characteristics and covariances associated with the

problem. When the same target is located near the boundary (at (30,0,0)), both techniques

were able to recover the contrast approximately 20% better relative to the center position

(Table-1).

When 1% noisy data generated from a centered cylindrical target with a diameter of 15

mm (first rows of Fig. 5(a) and (b)) was used in the reconstruction, both LM and GLS

techniques were able to recover approximately 50% of the expected contrast (Table-1). For

the same type of target located near the boundary (at (30,0)), the recovery of contrast was

approximately 70% in the case of GLS. For LM, the recovery was only 50% for μa and 85%

for μ′
s under these conditions. The reconstruction results also show that recovery of the

centered target is always poor relative to an object near the boundary. This is primarily due

to the hyper-sensitivity at the boundary in these cases.24 The extended cylindrical target

is essentially equivalent to the two-dimensional case of a circular inclusion and the trend

observed in 3D of recovering more contrast for a target near the boundary is similar to the

behavior found in 2D.24
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When 5% noisy data was used, LM reconstruction (middle rows of Fig. 5(a) and (b))

performs poorly in terms of localization of the target, whereas GLS was able to reconstruct

optical images with better quality and quantitation (up to 70%). Even though the recon-

structed results using very noisy data were presented here from only one type of target,

similar trends were also observed in other cases that mimic the 2D reconstructions reported

in Ref.17 These results show that GLS outperforms LM even though the data noise level

is high because stability is retained by including the noise characteristics into the weight

matrices used for normalization.

Accuracy in contrast recovery of local targets increases as the size of the target increases,

as shown in Fig. 7. For example, the contrast recovered for a centered target below 20

mm in diameter is only about 30% of the true value and as low as 10% for the LM

algorithm (Fig. 7), whereas increasing the size of target to 30 mm leads to quantitative

accuracy near 100%. The GLS approach provides maximal contrast recovery and superior

image quality at all sizes relative to LM (example: Fig. 6). Even when the target size is as

low as 5 mm (Fig. 6), the object was well localized in the GLS case, but not with LM (Fig. 6).

The performance comparison of the algorithms in terms of contrast recovery (Fig. 8)

confirms that the position of the target dictates the response. When the target had 10:1

contrast in comparison to the background, the maximum recovery of contrast was ∼ 5:1.

GLS outperformed LM in this regard but there is a plateau in recovery of contrast at 400%

of the background value.

Table-2 shows that estimation parameter dependence (cross-talk) is lower (by 20%) for

GLS compared to LM, by reinforcing the independence of μa and μ′
s through elimination of

any cross-terms in the weight matrix Wμ−μ0 (Eq. 15). The inter-parameter dependence is

complex because of the non-unique relationship between the optical property distribution

and the incomplete boundary data, indicating that different formulations of the inversion

tend to perform differently. Nonetheless, the estimation parameter dependence is substan-

tially higher in 3D data-limited situations, relative to when the ratio of data to number of

estimates is less skewed.

In the case of phantom data (Fig. 10), as expected GLS reconstructions showed more

promising results in this test case. Characterization of the data collection system, leading

to variance estimation depending on the voltage measure at PMT (Fig. 9) enabled the

employment of the GLS technique for experimental data reconstructions. Both techniques
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(LM and GLS) were able to give qualitative information about the target, in terms of

quantification the GLS technique overtakes the LM technique (Fig. 10). It should be noted

that this type of charcterization of the experimental system does not take into account

coupling errors between the light collection/delivery fiber and tissue surface. These kind

of unsystematic errors are difficult to estimate as it depends on many parameters, such as

tissue surface roughness, tissue elastic properties, design of tissue-fiber coupling interface,

repetability, and alingment of fibers. But development of these type of methods including

systematic noise charcterstics in the reconstruction procedure will be taking a step in the

right direction. Moreover, as it can be seen from Eq. 22, covarinces among the data points

was ignored, making the data weight matrix (Wδ) a simple diagonal matrix. Inclusion

of covariances can offer a better weighting in case of experimental data, this is under

investigation as of now. Even though this test case showed very promising results, in our

experience, in cases where coupling errors are dominant in the data, the GLS scheme did not

yield any meaningful results. In these cases, the LM technique was able to give reasonable

results.

Even though the data used here is generated by using in-plane data, it was collected only

from the source fiber plane, previous invistigations indicate that the use of out-of-plane data

(when the data was collected from rest of the fibers in all three planes) may not give enough

advantage in terms of reconstructed image quality given an increase in the data-acquistion

time and computational cost.24 It is also important to note that, the results presented here

uses a cylindrical imaging domain, this study is generic in nature, especially in terms of

proving the computational efficiency of alternative forms (Fig. 2), as NN/NM was changed

over a range of 0.0028 to 100 (spanning from well-determined to highly under-determined

problems).

Partial volume effects can be observed in the recovery of contrast as a function of target

size. The recovery of contrast was much higher for the extended cylinder target compared

to the spherical inclusion (Table-1). The quantitative accuracy of reconstructed images in-

creases with an increase in target size (Fig. 7). GLS reconstruction results of the data from a

centered cylindrical object are encouraging, demonstrating recovery of more than 30% con-

trast in this case (other Newton-type algorithms have reported a maximum of 10% contrast

recovery7,11,13,14,24).

8. Conclusions

Three-dimensional diffuse optical tomography is more computationally intensive because of

the size of the parameter space to be reconstructed. Newton-based inversion methods that
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operate on a Hessian matrix, which has dimensions of the number of measurements rather

than the number of parameters, can be derived using the Sherman-Morrison-Woodbury

identity and become computationally more efficient once the number of estimation parame-

ters exceeds two times the number of measurements. Representative examples demonstrate

that this form of update equation can be at least six times faster in practice in the

highly under-determined problems which commonly occur in 3D. Three dimensional diffuse

optical tomographic reconstruction algorithms also suffer from partial volume effects that

degrade significantly the accuracy with which optical properties can be quantified. The

GLS approach which incorporates structured weight matrices consisting of the variance and

covariance of the data-model misfit and the optical properties, improves the quantification

of optical properties by at least 20% in 3D. The GLS estimate is also robust to data noise

as high as 5% – conditions under which other algorithms fail when the problem is highly

under-determined. By characterizing the detector noise for systematic errors, using a multi-

layered gelatin phantom data, the GLS technique can be easily employed for reconstructing

experimental data and can yield better quantification of targets compared to conventional

reconstruction methods. Future investigations will include thorough examination of the

GLS technique when applied to phantom and clinical data and extension of the technique

to direct-spectral reconstruction. The test data used in this article, along with computer

algorithms, are available on a web page.33

A. Appendix

A.1. Alternative form for GLS update equation

Before deriving the alternative form, it is useful to catalog several properties of the

weight-matrices and their inverses.28

Wδ = (Cδ)
−1; Wμ−μ0 = (Cμ−μ0)

−1

(Wδ)
T = Wδ; (Wμ−μ0)

T = Wμ−μ0

(Cδ)
T = Cδ; (Cμ−μ0)

T = Cμ−μ0

(23)

If a square matrix A, has block form

A =

[

−Cδ J

JT Wμ−μ0

]

(24)

with dimensions (2NM+2NN)x(2NM+2NN), it is readily shown to be symmetric by invoking

the relationships in Eq. 23:

(A)T =

[

−Cδ J

JT Wμ−μ0

]T

=

[

−Cδ
T (JT )T

JT Wμ−μ0

T

]

=

[

−Cδ J

JT Wμ−μ0

]

= A. (25)
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Since inverses of both Cδ and Wμ−μ0 exist, then A
−1 also exists and can be expressed in

block form as well

A
−1 =

[

P Q

R S

]

(26)

in which case

AA
−1 =

[

−Cδ J

JT Wμ−μ0

] [

P Q

R S

]

=

[

I 0

0 I

]

(27)

requires that

−CδP + JR = I (28)

−CδQ + JS = 0 (29)

JTP + Wμ−μ0R = 0 (30)

JTQ + Wμ−μ0S = I. (31)

These relationships can be manipulated through a series of substitutions to express the blocks

of A
−1 in terms of combinations of the block components of A. Specifically, Eqs. 29 and 30

along with the weight matrix properties in Eqs. 23 imply that

Q = WδJS (32)

and

R = −Cμ−μ0J
TP. (33)

Substituting Eq. 33 into Eq. 28 to form the expression

P = − (

Cδ + JCμ−μ0J
T
)−1

(34)

which is put back into Eq. 33 produces

R = Cμ−μ0J
T

(

Cδ + JCμ−μ0J
T
)−1

. (35)

A similar series of steps starting with Eqs. 32 and 31 to write

S =
(

Wμ−μ0 + JTWδJ
)−1

(36)

which is combined again with Eq. 32 yields

Q = WδJ
(

Wμ−μ0 + JTWδJ
)−1

. (37)

Since A is symmetric and invertible, A
−1 is symmetric as well.

(A−1)T =

[

P Q

R S

]T

=

[

PT RT

QT ST

]

=

[

P Q

R S

]

= A
−1 (38)
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in which case

QT = R (39)

Substituting the forms of Q and R (Eqs. 37 and 35, respectively) into Eq. 39 results in

[

WδJ
(

Wμ−μ0 + JTWδJ
)−1

]T

= Cμ−μ0J
T

(

Cδ + JCμ−μ0J
T
)−1

(40)

Equation 38 also requires ST = S, where S is given by Eq. 36, which when identified in the

term on the left side of Eq. 40 allows it to be rewritten as

(

Wμ−μ0 + JTWδJ
)−1

JTWδ = Cμ−μ0J
T

(

Cδ + JCμ−μ0J
T
)−1

(41)

Alternately,

A
−1

A =

[

P Q

R S

] [

−Cδ J

JT Wμ−μ0

]

=

[

I 0

0 I

]

(42)

or

RJ + SWμ−μ0 = I. (43)

Solving for S

S = Cμ−μ0 − RJCμ−μ0 (44)

and substituting Eqs. 35 and 36 for R and S in Eq. 44 produces

(

Wμ−μ0 + JTWδJ
)−1

= Cμ−μ0 − Cμ−μ0J
T

(

Cδ + JCμ−μ0J
T
)−1

JCμ−μ0 (45)

Note that this derivation was adapted from Liebelt et. al.34 A variant of Eq. 45 exists in the

literature with many names, the most-common being the Sherman-Morrison-Woodbury

identity.35–42 It is also known as the matrix inversion lemma.43,44 Even though one

can start from this equation and derive the alternative forms, the complete derivation is

presented here for completeness.

Substituting Eq. 45 back into Eq. 9 yields

�μi =
[

Cμ−μ0 − Cμ−μ0J
T

(

JCμ−μ0J
T + Cδ

)−1
JCμ−μ0

]

{

JT Wδδi−1 − Wμ−μ0(μi−1 − μ0)
}

(46)

or

�μi =
[

I − Cμ−μ0J
T

(

JCμ−μ0J
T + Cδ

)−1
J
]

{

Cμ−μ0J
T Wδδi−1 − Cμ−μ0Wμ−μ0(μi−1 − μ0)

}

(47)

which results in

�μi =
[

I − Cμ−μ0J
T

(

JCμ−μ0J
T + Cδ

)−1
J
]

{

Cμ−μ0J
TWδδi−1 − (μi−1 − μ0)

}

(48)

as the alternative form for the update equation (Eq. 16)
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The next two subsections show the alternative forms of other least-squares minimization

techniques, namely Levenberg-Marquardt and Tikhonov minimizations.

A.2. Alternative form for LM update equation

The Levenberg-Marquardt (LM) update equation (Eq. 5) is a special case of the GLS

update equation (Eq. 9) when Wμ−μ0 = αI and Wδ = I (see Sec. III.B.4 in Ref.17). Using

these forms in Eq. 41 leads to an alternative form to Eq. 5

�μi = (αI)−1JT
(

J(αI)−1JT + I−1
)−1

δi−1 (49)

Rearranging the terms in Eq. 49 leads to

�μi =
JT

α

(

JJT + αI

α

)−1

δi−1 (50)

which can be simplified to produce

�μi = JT
(

JJT + αI
)−1

δi−1. (51)

Eq. 51 is also known as under-determined form in the literature.11,14

A.3. Alternative form for Tikhonov update equation

The objective function17,45 for the Tikhonov scheme is

Ω = ‖y − G(μ)‖2 + λ‖L(μ − μ0)‖2 (52)

Minimization of Eq. 52 and linearizing the problem leads to update equation17,32

�μi =
[

JTJ + λLTL
]−1 (

JT δi−1 − λLTL(μi−1 − μ0)
)

. (53)

Equation 53 is a special case of the GLS update equation (Eq. 9) with weight matrices (see

Sec. III.B.4 in Ref.17)

Wδ = I; Wμ−μ0 = λLTL (54)

From Eq. 48 one can write

�μi =

[

I − (

λLTL
)−1

JT
(

J
(

λLTL
)−1

JT + I−1
)−1

J
]

{

(

λLTL
)−1

JT Iδi−1 − (μi−1 − μ0)
}

(55)

which leads to

�μi =

[

I − (

LTL
)−1

JT
(

J
(

LTL
)−1

JT + λI
)−1

J
]

{

(

λLTL
)−1

JT δi−1 − (μi−1 − μ0)
}

(56)

Assuming μi−1 = μ0, the single-step Tikhonov update equation (or its equivalent)14,46,47

becomes

�μi =
(

JTJ + λLTL
)−1

JT δi−1 (57)
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Using Eqs. 41 and 54 leads to

�μi =
(

λLTL
)−1

JT
(

J
(

λLTL
)−1

JT + I−1
)−1

δi−1 (58)

which can be rearranged to

�μi =
(

LTL
)−1

JT
(

J
(

LTL
)−1

JT + λI
)−1

δi−1 (59)

Eq. 59 is also known as under-determined Tikhonov single-step update equation.11,14,16

A.4. Calculation of number of operations for LM and GLS update equations

The number of operations was estimated by assuming that divisions/multiplications

consume most of the processor cycles. Note that Gaussian elimination was used in

computing matrix inversion. Typically, Gaussian elimination for an NxN matrix requires

((N3/3) + N2 − (N/3)) operations.42 The memory required to invert a matrix of dimension

NxN is N2.42 The number of operations only includes solution of the update equation and

does not account for the number of operations required to form the matrices/vectors used

in these equations.

For the GLS update equation (Eq. 9), the number of operations required for iteration i is
(using the dimensions defined after Eq. 15)

Number of operations =
h
(2NM ∗ 2NM ∗ 2NN) + (2NN ∗ 2NM ∗ 2NN) +

“
(2NN)3

3
+ (2NN)2 − 2NN

3

”i
+(2NN ∗ 2NN ∗ 1) + [(2NN ∗ 2NM ∗ 1) + (2NM ∗ 2NM ∗ 1) + (2NN ∗ 2NN ∗ 1)]

(60)

For the alternative form for the GLS update equation (Eq. 16), the number of operations is

Number of operations = [(2NN ∗ 2NN ∗ 2NM) + (2NM ∗ 2NN ∗ 2NM) + (2NN ∗ 2NN ∗ 2NM)

+
“

(2NM)3

3
+ (2NM)2 − 2NM

3

”
+ (2NM ∗ 2NM ∗ 2NN)]

+(2NN ∗ 2NN ∗ 1) + [(2NN ∗ 2NN ∗ 2NM) + (2NN ∗ 2NM ∗ 1) + (2NM ∗ 2NM ∗ 1)]

(61)

Similarly, for the LM update equation (Eq. 5), the number of operations required for iteration
i is

Number of operations =

»
(2NN ∗ 2NM ∗ 2NN) +

„
(2NN)3

3
+ (2NN)2 − 2NN

3

«–
+ (2NN ∗ 2NM ∗ 1) (62)

The number of operations for the alternative form for the LM update equation (Eq. 6) is

Number of operations = (2NN ∗ 2NM ∗ 1) +
h
(2NM ∗ 2NN ∗ 2NM) +

“
(2NM)3

3
+ (2NM)2 − 2NM

3

”i
+(2NM ∗ 2NM ∗ 1)

(63)

Note that the computation time for these update equations is not only dependent on

the number of operations needed to be performed, but also on the memory required for

implementing the operations.
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List of Tables

Table 1: Mean and standard deviation of the reconstructed μa and μ′
s values in

mm−1 for the background and target with LM and GLS techniques using data with 1%

noise. The spherical target had a diameter of 15 mm. One set of reconstructed images for

the target in the center is presented in Fig. 3. The cylindrical target diameter was 15 mm

and extended through out the imaging domain in the z-direction.

Table 2: Mean and standard deviation of reconstructed μa and μ′
s in mm−1 values

for the background and a spherical target with no scattering contrast using the LM and GLS

techniques. The diameter of the spherical inclusion was 15 mm. Data with 1% noise was used.

List of Figures

Figure 1: Schematic diagram of the three-dimensional cylindrical imaging domain.

Figure 2: Comparison of the number of operations required for the original update

equation and its alternative form (a). for GLS (Eq. 9, represented by GLS) and its

alternative form (Eq.16, represented by GLS-AF) (b). for LM (Eq. 5, represented by LM)

and its alternative form (Eq. 6, represented by LM-AF) as a function of the ratio of number

of estimation parameters to number of measurements (represented by NN/NM). Memory

required for implementing the inversion procedure is plotted in (c).

Figure 3: Actual and reconstructed (a) μa and (b) μ′
s distributions of a spherical

target having a diameter of 15 mm located at the center (at (0,0,0)) using 1% noisy data.

Two-dimensional cross-sections of the 3D volume in 5mm increments spanning from z =

-25 mm to z = 25 mm (from left to right) are shown. Actual distributions are given in the

first row. Reconstructed distribution using the Levenberg-Marquardt (LM) minimization

scheme and GLS minimization scheme are presented in the middle and last rows respectively.

Figure 4: Comparison of results from the GLS update equation (Eq. 9, represented by GLS)

and its alternative form (Eq.16, represented by GLS-AF). (a) L2-norm of data-model misfit

(δ) as a function of iteration, (b) Difference (in %) in the curves in (a), (c) L2-norm of the

solution space (μactual−μ) as a function of iteration (d) Difference (in %) in the curves in (c).

Figure 5: Actual and reconstructed (a) μa and (b) μ′
s distributions of a cylindrical

target located at the center (diameter - 15 mm) using 5% noisy data. Two-dimensional
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cross-sections of the 3D volume in 5mm increments spanning from z = -25 mm to z =

25 mm (from left to right) are shown. Actual distributions are given in the first row.

Reconstructed distribution using the Levenberg-Marquardt (LM) minimization scheme and

GLS minimization scheme are presented in the middle and last rows respectively.

Figure 6: Actual and reconstructed (a) μa and (b) μ′
s distributions of a spherical

target having a diameter of 10 mm located at the center (at (0,0,0)) using 1% noisy data.

Two-dimensional cross-sections of the 3D volume in 5mm increments spanning from z =

-25 mm to z = 25 mm (from left to right) are shown. Actual distributions are given in the

first row. Reconstructed distribution using the Levenberg-Marquardt (LM) minimization

scheme and GLS minimization scheme are presented in the middle and last rows respectively.

Figure 7: Comparison of recovered optical properties as a function of inclusion size

(diameter) for the spherical target located at (0,0,0) using both LM and GLS techniques.

Standard deviations were of the same order as given in Table-1.

Figure 8: Comparison of recovered optical properties with respect to expected values in a

spherical target located at (0,0,0) and (20,0,0) having a diameter of 25 mm using both LM

and GLS reconstruction techniques. Observed standard deviations are of similar order to

that reported in Table-1.

Figure 9: An error (deviation, σ) plot of the measured voltage and phase (θ) as a

function of mean of measured PMT voltage. The legend of the figure represnts the fitting

model used. Each data point corresponds to a sample size of 200.

Figure 10: Actual and reconstructed (a) μa and (b) μ′
s distributions of a cylindrical

target using experimental multi-layered phantom data. Two-dimensional cross-sections of

the 3D volume in 2.5 mm increments spanning from z = -12.5 mm to z = 12.5 mm (from left

to right) are shown. Actual distributions are given in the first row. Reconstructed distribu-

tion using the Levenberg-Marquardt (LM) minimization scheme and GLS minimization

scheme are presented in the middle and last rows respectively.
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Tables

Methods
Target Background Target

shape position μa μ′
s μa μ′

s

Actual - - 0.01 1.0 0.02 2.0

LM
Spherical

(0,0,0) 0.0101±0.0003 1.0079±0.0322 0.0104±0.0002 1.1259±0.0160

(30,0,0) 0.0101±0.0006 1.0063±0.0500 0.0126±0.0009 1.4514±0.1152

Cylindrical
(0,0) 0.0102±0.0010 1.0120±0.0874 0.0151±0.0012 1.4308±0.0854

(30,0) 0.0101±0.0006 1.0030±0.0663 0.0148±0.0015 1.8406±0.2470

GLS
Spherical

(0,0,0) 0.0101±0.0001 1.0100±0.0212 0.0122±0.0004 1.2903±0.0326

(30,0,0) 0.0100±0.0004 1.0108±0.0250 0.0141±0.0006 1.4498±0.0853

Cylindrical
(0,0) 0.0102±0.0008 1.0055±0.0500 0.0159±0.0009 1.4750±0.0941

(30,0) 0.0101±0.0008 1.0043±0.0588 0.0170±0.0012 1.6793±0.1848

Table 1
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Methods
Target Background Target
position μa μ′

s μa μ′
s

Actual - 0.01 1.0 0.02 1.0

LM
(0,0,0) 0.0101±0.0003 1.0025±0.0211 0.0109±0.0001 1.0500±0.0071

(30,0,0) 0.0101±0.0004 1.0009±0.0205 0.0119±0.0004 1.0934±0.0269

GLS
(0,0,0) 0.0101±0.0001 1.0016±0.0269 0.0126±0.0002 1.0924±0.0253

(30,0,0) 0.0100±0.0004 1.0029±0.0189 0.0136±0.0003 1.1002±0.0294

Table 2
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Figures

Figure 1
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Figure 5(a)
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Figure 5(b)
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Figure 6(a)
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Figure 6(b)
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Figure 10(a)
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Figure 10(b)
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